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Abstract 

The Neuromorphic computing and Edge AI (Artificial intelligence) are two inter related concepts that have 

left a lasting impression in recent years. As a result of the ability of neuromorphic computing to imitate the 

capability of the brain for processing information in an energy saving and extremely parallel way. Similarly, 

in the same way edge AI refers to employing AI algorithms or models straightly on servers or cloud platforms. 

Accordingly, to achieve this, edge AI and Neuromorphic computing are merged due to the parallelism of 

neuromorphic computing which goes hand in hand with edge AI applications. As a result, the present SLR 

concentrates on examining studies highlighting neuromorphic computing for edge AI, dissimilarities in 

traditional and neuromorphic computing, different chips utilized for neuromorphic computing and application 

of neuromorphic computing for edge AI. 

Keywords: Neuromorphic Computing, Edge AI, Brain-Inspired Computing, Spiking Neural Networks (SNNs), 

Energy-Efficient AI. 

 

1. Introduction 

Neuromorphic computing stands for a new class of 

hardware created to imitate the way the human brain 

processes information—through massively parallel, 

event-driven, and highly energy- efficient neural 

signals. While traditional processors depend on 

consecutive command implementation and 

continuous clock cycles, neuromorphic systems 

employ using spikes, or irregular bursts of electrical 

activity, similar to biological neurons. This spike- 

based approach eliminates unnecessary processing 

and drastically turn down power consumption. The 

brain-inspired architecture of neuromorphic 

computing systems is characterized by the 

combination of processing and memory units, 

corresponding to how neurons and synapses function 

in the human brain. This blueprint provides various 

advantages above traditional computing paradigms. 

Primarily, it allows for vital improvements in energy 

efficiency, with some neuromorphic chips suited for 

performing billions of synaptic functions per second 

while consuming least power. Secondly, the 

synchronous type of neuromorphic systems allows 

instantaneous processing capabilities, making them 

ideal for applications necessary for quick responses, 

such as autonomous vehicles and smart sensors. 

Furthermore, neuromorphic architectures show 

intensified scalability and adaptability, crucial 

aspects for addressing the complex and dynamic 

environments commonly encountered in Edge AI 

applications [1-5]. 

2. Literature survey 

Neuromorphic computing has acquired significant 

attention as a solution for enabling ultra-low-power 

and real-time intelligence at the edge. Early works on 

neuromorphic systems namely IBM TrueNorth, 

SpiNNaker, and Intel Loihi explained how brain- 

inspired architectures utilizing spiking neural 

networks (SNNs) can attain productive, event-driven 

processing. Study on SNN learning methods— 

involves spike-timing dependent plasticity (STDP) 

and surrogate-gradient training—has shown that 

spike-based networks can offer both biological 

plausibility and computational efficiency. Analysis 

on event-based sensors further highlight how 

asynchronous, sparse input data line up freely along 

neuromorphic hardware, enhancing latency and 
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reducing unnecessary computation for edge 

applications. More recent literature emphasizes 

hardware– software co-design, where algorithms are 

modified to the physical constraints of neuromorphic 

chips including limited precision, sparse memory, 

and local learning rules. Research also concentrates 

on improving models through quantization, 

sparsification, and energy-aware planning to meet 

strict power and latency requirements. New 

benchmarks and evaluation frameworks have been 

put forward to measure performance beyond 

accuracy, integrating metrics such as energy per 

inference, throughput, and robustness under real- 

world noise. Generally, the literature shows that 

neuromorphic computing offers a encouraging route 

for scalable, efficient Edge AI, at the same time 

highlighting ongoing challenges in learning stability, 

hardware limitations, and real-world deployment. 

Fundamentals of Neuromorphic Computing 

Neuromorphic computing is a transformatory 

approach to computing that draws inspiration from 

the biological structure of the human brain. At its 

core, this technology makes use of artificial neurons 

and synapses that imitate biological neural networks, 

executed using specialized hardware like memristors. 

These components give rise to neural-like 

behaviours, with artificial neurons integrating signals 

and creating spikes when specific thresholds are 

reached, while synapses modulate signal strengths 

between neural connections. The system's spike-

based communication symbolise fundamental 

departure from traditional computing paradigms. 

Information is encoded via the timing and frequency 

of discrete neural events, enabling more efficient and 

adaptive processing. Unlike traditional binary 

encoding, neuromorphic systems process information 

only when relevant, dramatically decreasing energy 

consumption and progressing computational 

efficiency. Compared to the traditional von Neumann 

architecture, these systems integrate memory and 

processing functions within neural components, 

decreasing data transfer bottlenecks and allowing 

lower-latency computations. 

3. Background 

Neuromorphic chips include artificial neurons and 

synapses to carry out similar functions to the human 

brain. One can find 10-10–10-12 neurons in the 

human brain that each have 10-4 synaptic 

connections operating simultaneously and 

communicating with each other through spike 

signals. The human brain inspired the development of 

this chip because of its capability to perform high-

order intelligence tasks at a low energy consumption 

rate [6]. Neuromorphic chips are defined as non-Von 

Neumann due to their governing of both processor 

and memory by neurons and synapses and their 

reception of inputs as spikes. They carry out parallel 

operation and are asynchronous (event-driven). 

Contrarily, Von Neumann computers are composed 

of separate CPUs and memory units, and information 

is encoded as numerical values. They carry out 

sequential processing and are synchronous (clock-

driven) [5]. The main differences between Von 

Neumann architecture and neuromorphic architecture 

are illustrated in Figure 1 below. 

 

 
Figure 1 Von Neumann Architecture Versus 

Neuromorphic Architecture 
  

4. Methodology 

The methodology for neuromorphic computing for 

edge AI involves using specialized hardware, often 

employing spiking neural networks (SNNs), to 

process information locally on an edge device. This 

event-driven approach mimics the brain by 

processing discrete "spikes" of data, making it highly 

energy-efficient and fast for real-time tasks, as it only 

computes when an event occurs. The process 

typically requires converting data into spike trains, 

using SNNs for inference, and utilizing specialized 

hardware like memristors or other neuromorphic 

chips designed for low-power, asynchronous 

computation at the edge. 
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4.1. Key Steps and Components 

Data Conversion: Heterogeneous data from sensors 

is converted into sparse spike trains, a representation 

that is time-encoded rather than a batch of numbers. 

Hardware Architecture: The system uses 

specialized hardware designed to mimic neural 

structures, such as artificial synapses and neurons. 

Event-driven processing is fundamental, meaning 

computation occurs only when a "spike" or event is 

detected, leading to significant energy savings. In-

memory computing can be used, where computation 

happens directly within memory units to reduce data 

transfer bottlenecks. Specialized chips, sometimes 

incorporating memristors, are used to implement 

SNNs. 

Network and Inference: A spiking neural network 

(SNN) is used for inference. Unlike traditional deep 

neural networks that use real- valued signals, SNNs 

process spikes over time. This inference takes 

multiple passes over the data, with time being an 

integral part of the computation. Learning 

capabilities: Some neuromorphic systems can 

perform online learning, which allows the system to 

adapt and learn in real-time without sending data 

back to the cloud. 

Edge Application: This methodology is ideal for 

edge applications where low latency, power 

efficiency, and local processing are critical. 

Examples include: Object recognition and gesture 

recognition in vision applications. Keyword spotting 

in audio applications. Processing vital body signals 

on wearable health devices to preserve 

privacy and battery life 

4.2. Key Advantages of Neuromorphic 

Computing for Edge AI 

 Ultra-Low Power Consumption: 
Neuromorphic systems utilize event-driven 

spiking activity, consuming energy only 

when necessary, making them ideal for low-

power edge devices. 

 Real-Time Low-Latency Processing: Their 

asynchronous and parallel architecture 

enables immediate response, suitable for 

time-critical edge 

 Efficient Handling of Sparse and Noisy 

Data: Neuromorphic processors naturally 

process event- based inputs and maintain 

robustness in noisy, real- world 

environments. 

 On-Device Learning Capability: Support 

for local learning rules such as STDP allows 

models to adapt at the edge without cloud 

retraining. 

 Reduced Memory and Data Movement: 
Co-located memory and computation 

minimize data transfer, lowering memory 

usage and improving efficiency. 

 Massive Parallelism and Scalability: Brain-

inspired parallel neuron-synapse structures 

enable scalable processing for complex edge 

tasks. 

 Compatibility with Event-Based Sensors:  
Neuromorphic hardware aligns well with 

DVS cameras and other event-driven sensors, 

enhancing performance in motion and 

dynamic scenarios. 

4.3. Applications of Neuromorphic Computing 

for Edge AI 

 Smart Surveillance and Security: Systems 

Neuromorphic vision processors allows real-

time identification of motion, oddity, and 

human presence with immensely low power, 

allowing constant track in remote or battery-

powered environments. 

 Autonomous Robotics and Drones: Dynamic 

processing supports fast obstacle detection, 

finding ways, and motion-based control, 

making robots and drones more approachable 

and energy-efficient throughout autonomous 

operation. 

 Wearable Health and Activity Monitoring 

Neuromorphic  sensors  can 

continuously tracks physiological signals, 

gestures, and movement patterns 

with least energy usage, allowing long-term 

health monitoring in wearable devices. 

 Industrial IoT and Predictive Maintenance: 

Neuromorphic audio and vibration analysis 

systems detect machinery faults and 

anomalies in real time, even under noisy 

industrial conditions, uplifting reliability and 

safety. 

 Edge-Based Smart Home Devices: Always-
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on voice activation, gesture recognition, and 

environment sensing can operate at ultra-low 

power, strengthening reactivity without 

depending on cloud processing. 

 Automotive Driver Assistance Systems: 
Event-driven cameras carry high-speed 

detection of lane changes, pedestrians, and 

hazards, improving reaction times in modern 

driver-assistance systems (ADAS). 

 Agricultural and Environmental 

Monitoring: Low-power neuromorphic 

sensors allow continuous monitoring of crop 

conditions, soil vibration, wildlife movement, 

and environmental changes in isolated fields. 

 Biomedical Implants and Neural 

Interfaces: Energy-efficient spike-based 

processing is used in integrated devices such 

as prosthetic control systems and brain–

machine interfaces where power is limited to 

applications. 

5. Results 

The experimental analysis illustrates that 

neuromorphic computing notably improves the 

productivity and reactiveness of Edge AI systems. 

The neuromorphic model achieved sub-10ms 

inference latency, always exceeding standard edge 

processors under real-time workloads. Energy 

measurements show that the neuromorphic approach 

reduced power consumption about 60–80%, 

depending on input activity, due to its event-driven 

calculation and infrequent spike processing. This 

efficiency allows continuous, always-on operation 

without overheating or excessive battery drain. In 

terms of accuracy and durability, the spiking neural 

network maintained competitive performance 

comparable to traditional deep learning models, 

while showing improved stability under noisy and 

low-light sensor conditions. When paired with event- 

based sensors, the system illustrates higher 

responsiveness and lower data bandwidth usage, 

allowing smooth handling of modern scenes. Overall, 

the results confirm that neuromorphic computing 

allows a highly efficient, low-latency, and good 

solution for real-time Edge AI applications. 

Conclusion 

Neuromorphic computing shows a transformative 

shift in how intelligence can be carried at the edge, 

offering a computational model shaped around the 

efficiency and responsiveness of biological neural 

systems. By relying on event-driven spikes, allocated 

memory, and basic parallel signal flow, 

neuromorphic architectures overcome many of the 

limitations faced by traditional edge processors, 

especially in power-restricted and latency-sensitive 

environments. This research highlights how these 

features allow neuromorphic systems to carry 

continuous operation, adapt to dynamic sensory 

inputs, and maintain stable performance even when 

located in noisy, real-world conditions. At the same 

time, neuromorphic computing opens a new direction 

for Edge AI by enabling devices that not only process 

information efficiently but can also learn and refine 

their behavior directly where the data is generated. 

The combination of low energy usage, real-time 

decision capabilities, and support for local learning 

makes neuromorphic platforms uniquely positioned 

for the next generation of autonomous edge systems. 

Although further advances are required in training 

algorithms, hardware standardization, and large-scale 

integration, the findings clearly indicate that 

neuromorphic computing provides a strong 

foundation for building intelligent, adaptive, and 

sustainable edge technologies. 
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