

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4368

Adaptive Resource Scheduling in Serverless Architectures for Low-Latency

Microservices
Rishabh Agarwal1

1Harrisburg University of Science and Technology, Pennsylvania

Emails: rishabh.agarwal1124@gmail.com1

Abstract

With the transformation of cloud computing, micro services are progressively implemented on serverless

architecture because of the nature of scalability, cost effectiveness, and lack of infrastructure management.

Nevertheless, the ability to provide low-latency operation to microservices in an unpredictable and

dynamically changing serverless computing environment is one of the primary challenges. Adaptive resource

scheduling mechanisms are discussed in this paper as a solution to generate a consistent low-latency response

in serverless microservice deployments. The focus is on the analysis of bottlenecks in the performance of the

runtime, scheduling algorithms, cold start mitigation, and load balancing in real time. Containers

orchestration, lifecycle management of functionalities, and AI-assisted scheduling in the context of cloud-

native ecosystems are the recent advancements that form the basis of the discussion. Adaptive resource

scheduling can be an important addition to serverless systems, which can enhance the responsiveness,

reliability, and scalability of microservices.

Keywords: Serverless Computing, Microservices, Adaptive Scheduling, Low Latency, Cloud-Native

Architecture

1. Introduction

The development of cloud-native computing has

changed the way software is developed and deployed,

and serverless architecture has become a trending

paradigm for hosting microservices. In serverless

computing, application logic is divided into discrete

functions to run on demand, and developers do not

explicitly provide resources or manage servers. This

abstraction enables developers to do application

logic, and the underlying platform handles

management of infrastructure, scaling, and

availability by default. The microservices paradigm

is also complementary to serverless systems and

offers modular, independent, and reusable service

components that are capable of being developed and

deployed independently [1]. Although the

operational benefits are high, serverless

environments create latency issues, particularly in

applications that are time-sensitive. Contrary to

traditional serverful deployments, serverless

functions usually possess cold starts, resource

contention, and unpredictable scheduling delays, all

of which prevent good performance and quality of

service (QoS) of latency-sensitive workloads [2]. To

solve these problems, it is important to reconsider the

allocation/scheduling of computational resources

dynamically by considering the changing demands of

the workload. The adaptive resource scheduling has

become a very important field of study in order to

overcome this gap in performance. It is also

concerned with the real-time provision of compute

resources, container lifecycle, and invocation queue

using context-based, real-time decision-making

algorithms. Adaptive scheduling can counter cold

starts, minimize queuing delays, and ensure low

latency even when the demand spikes unpredictably

because of workload behavior by customizing

resource allocation, thus reducing the workload [3].

Since the beginning, it is essential to comprehend the

interdependencies of the principles of serverless,

microservice behavior, and dynamic scheduling. The

following section extends this with an analysis of the

performance limitations of serverless microservices

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4369

that is inherent and the reasons why adaptive

scheduling is emerging as a necessity of the modern

cloud-native application.

2. Latency Challenges in Serverless

Microservices

Serverless computing brings about architectural

efficiencies along with distinctive performance

bottlenecks, particularly in cases where

microservices are requested regularly, concurrently,

and with fluctuating computational charges. The cold

start latency phenomenon is one of the most

commonly reported problems, where the underlying

infrastructure has to create runtime environments

(e.g., containers or VMs) before any function is run.

Such a startup may add milliseconds to several

seconds based on the runtime of the language, the size

of the container image, and platform readiness [4]. In

microservice systems, where many services may be

connected in a request-response workflow, any small

delays in one service can be propagated to

perceivable delays to the end-user. In addition, being

stateless, serverless functions have the advantage of

being scalable but can also result in resources being

reinstantiated on every invocation unless persistent

warm-up measures or other container reuse systems

are implemented [5]. The other source of latency is

the problem of contention for resources that comes

about due to multi-tenancy. The majority of

serverless systems are based on a shared

infrastructure system, in which various customers or

services share compute nodes, network interfaces,

and storage backends. The lack of smart scheduling

may result in other tenants' functions conflicting with

each other and leading to performance jitter and

random delays [6]. Moreover, load balancing systems

in traditional cloud systems are mostly reactive, but

not proactive. They do resource scaling depending on

the existing load, but cannot predict spikes or changes

in request patterns on a short-term basis.

Consequently, the microservices that cannot tolerate

latency issues are likely to be provisioned with

delayed resources, which results in service

degradation. The restrictions require a solution that

not only reacts to the resource requirements at any

given time but can also anticipate and respond to the

nature of the workload dynamically. Adaptive

resource scheduling has become a major concern in

order to capture such latency issues in totality. In the

following section, the adaptive scheduling

mechanisms working on serverless platforms and the

different strategies adopted to achieve maximum

performance under real-time conditions will be

explained.

3. Principles and Techniques of Adaptive

Resource Scheduling

Adaptive resource scheduling is the clever and

dynamic allocation of computational resources to

workloads in accordance with real-time performance

indicators, past trends, as well as forecasted demand,

as illustrated in Figure 1. In serverless platforms, this

involves lifecycle management of instances of

functions, optimization of the function scheduling

queue, as well as preemptive allocation of resources

to achieve service-level goals like latency limits [7].

Monitoring and prediction are at the very heart of

adaptive scheduling. Some of the telemetry metrics

that are collected by systems include request rates,

execution time, memory consumption, and instance

lifecycle metrics. The prediction models, typically

machine learning algorithms, break down this data to

predict the future load trends and arrive at the optimal

number of instances of functions to warm up or keep

in memory [8]. The second is proactive container pre-

warming, where idle containers are kept at a ready

position to handle the anticipated workloads, thus

producing no delays on cold starts. This technique

needs an intelligent choice to guide the expenses of

maintaining instances warm to the advantage of

lower latency [9]. Other platforms use function

fusion or consolidation, in which related functions

are called together and often are combined into a

single execution unit, eliminating the delays in inter-

function communication and eliminating scheduling

overhead. Another adaptive method is priority-based

scheduling, in which functions are assigned various

priority levels depending on the application

criticality, past usage behavior, or user constraints

stipulated QoS. Resource allocation and invocation

queues are prioritized on high-level functions such

that regular low-latency performance of critical

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4370

services is maintained [10]. Also, resource elasticity

is critical in adaptive scheduling. Serverless products

are able to scale the memory, CPU, and network

bandwidth of functions dynamically by observing

usage. As an example, an example of the performance

of a function being slow because of CPU bottlenecks

can be automatically re-provisioned into more

resources during runtime. In order to coordinate these

methods, numerous systems apply custom scheduling

policies in Kubernetes-implemented serverless

engines (e.g., Knative). Such policies are used

together with autoscalers, container runtimes, and

monitoring tools to form a feedback loop that

continuously improves scheduling decisions based on

the current system state [11]. To receive insights on

the implementation of adaptive scheduling in cloud-

native systems, it is necessary to take a glance at the

technologies and infrastructure layers that support it.

The following part of the paper investigates the

operationalization of these principles in modern

serverless orchestration.

Figure 1 Core Components and Techniques of Adaptive Resource Scheduling In Serverless Platforms,

Highlighting Telemetry-Based Monitoring, Machine Learning-Based Prediction, And Orchestration

Via Kubernetes-Based Frameworks To Enable Efficient Function

Scheduling, Latency Reduction, And Resource Elasticity.

4. Integration into Cloud-Native Serverless

Platforms

Adaptive scheduling in serverless systems would

need the integration with the wider cloud-native

orchestration stack, which includes container

runtimes, service meshes, autoscaling engines, and

observability frameworks. Native cloud platforms

offer the fundamental agility and modularity required

to enable dynamic scheduling mechanisms with no

loss to reliability and security [12]. The building

blocks include the container-based runtimes, e.g.,

Docker and containerd, which support lightweight

and isolated environments to run functions. Starting,

stopping, and restarting these containers incur very

low overhead and allow both high-speed scaling and

warm container reuse, which are both fundamental

aspects of adaptive scheduling. The de facto

container orchestration platform, Kubernetes, helps

to deploy these containers with custom resource

definitions (CRDs) and controller loops to track

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4371

resource consumption and performance of these

functions [13]. Kubernetes extensions, such as

Frameworks such as Knative, can be used to add

support to event-driven serverless functions with

more powerful autoscaling capabilities, such as scale-

to-zero and concurrency control. The predictive

algorithms that predict the function invocation rate

can be added to the autoscaler provided by Native, to

keep the optimal concurrency levels, ensuring the

latency is minimized but without over-provisioning it

[14]. The observability tools like Prometheus,

Grafana, and OpenTelemetry are important, and

collecting metrics is required to make scheduling

decisions. These tools are the inputs to machine

learning models or rule-based engines, which activate

scheduling activities. As an example, a burst in CPU

utilization can cause the autoscaler to spin up more

containers in advance to serve a particular function or

redistribute loads in nodes with less contention. In

addition, serverless mesh systems such as Istio or

Linkerd can be used to provide effective routing and

shaping of network traffic between microservices.

These tools can be used to provide performance

assurance of inter-service communication, even when

the load varies, and maintain performance by routing

requests using a latency or error rate threshold. All of

these integrations allow a smart, reactive scheduling

framework that forms the core of the low-latency

performance of deployments of microservices in the

real world. In order to demonstrate these advantages

in practice, the following section provides a

comparative table indicating the differences between

the static and adaptive scheduling strategies in

serverless systems. To better contextualize the

operational gains from adaptive scheduling, Table 1

presents a comparative overview of static versus

adaptive scheduling approaches across several

performance-critical dimensions relevant to

serverless microservices.

Table 1 Comparison of Static vs. Adaptive Scheduling in Serverless Architectures

Parameter Static Scheduling Adaptive Scheduling

Scheduling Logic Fixed rules or thresholds Dynamic, context-aware algorithms

Cold Start Mitigation Minimal or none Pre-warming based on predictions

Latency Handling Reactive Proactive and predictive

Resource Utilization
Under or over-provisioning

common
Optimized in real-time

Load Prediction Not supported ML-based forecast and scaling

QoS Support Generic SLA-aware, priority-based execution

Scaling Speed Slow (threshold-triggered) Fast (demand-anticipated)

Platform Examples Basic FaaS offerings
Knative, OpenFaaS with custom

controllers

The advantages of adaptive scheduling become

particularly evident when examining latency-critical

workloads, such as real-time data processing,

financial transactions, or AI inference pipelines. To

further demonstrate the impact of adaptive strategies,

the next section discusses specific use cases and

experimental studies evaluating performance

outcomes in serverless deployments.

5. Use Cases and Experimental Results

The utility of adaptive resource scheduling in

serverless micro services is practical in that it is

demonstrated through actual application examples

and empirical research. The need to maintain low-

latency responses to interactions between users or

devices is required in applications in fields such as

real-time financial analytics, interactive games,

inferring machine learning edges, and Internet of

Things (IoT) command-and-control systems. These

systems tend to run under very fluctuating load

conditions, and simple mechanisms of scheduling do

not suffice. Financial transactions are one of the

interesting applications. These services need to

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4372

analyze the data of transactions in milliseconds to

identify suspicious trends and mark them during the

process. Cold starts and untimed scheduling in

serverless deployments may cause delays, and hence,

more fraud incidents may be missed. Adaptive

scheduling alleviates this by pre-warming function

instances when the transaction windows (i.e.,

business hours) are at risk and prioritization of

function queues on the basis of transaction urgency

[15]. The other example is AI workloads of inference

that are deployed in a serverless mode. Image

recognition or natural language processing are typical

example tasks in model inference and normally need

speedy compute units and minimum response time.

During inference, adaptive scheduling methods are

able to recognize the degradation of performance and

can dynamically allocate more memory and CPU, or

relocate inference workloads to other nodes in the

cluster that offer lower latency. This flexibility can

guarantee the model performance across the board

without over-provisioning [16]. It has also been

empirically indicated that adaptive scheduling is

much better than fixed methods in key performance

indicators. When tested using a high-concurrency

serverless application, with a single experimental

deployment of both a static and an adaptive

scheduling system, the adaptive system was shown to

reduce cold start latency by 38%, average response

time by 27 percent, and SLA compliance by half

under bursty workloads [17]. This was credited to

real-time scaling of instances, predictive pre-

warming, as well as priority-conscious resource

allocation. Subsequent experiments on serverless

systems built on Kubernetes with adaptive schedulers

had also indicated accelerated auto-scaling behavior

and enhanced container density, which resulted in an

improvement in performance as well as a cost

reduction [18]. These findings emphasize that

adaptive logic can be successfully incorporated into

the elements of lifecycle management of functions.

Furthermore, adaptive scheduling is efficient in using

resources, particularly in a multi-tenant environment.

The scheduler avoids overuse of resources, and at the

same time does not under-provide the resources by

balancing resource allocation per instance of

function, which are two of the typical traps of shared

serverless infrastructures. Consequently, the cloud

operators would be able to attain a higher physical

infrastructure utilization without affecting the

performance [19, 20]. Since the adoption of

serverless is on the rise in all industries, these

empirical validations are a good justification to adopt

adaptive resource scheduling. The following part will

bring the paper to a close by summarizing the

strategic value of this paradigm and stating the

possible path of further research and practice.

Conclusion

Serverless architectures have become a popular trend

in cloud-native application development because of

the rapidly changing environment in which they can

be deployed to run scalable and cost-effective

microservices. Nonetheless, the nature of the

constraints of serverless computing in general, and

cold start latency, resource contention, and reactive

scaling specifically, has limited its use in latency-

sensitive applications. This paper has discussed the

role of adaptive resource scheduling that offers a

viable and scalable answer to such problems.

Adaptive scheduling can be used to achieve

important latency goals and resource usage

optimization of serverless systems with real-time

monitoring, predictive algorithms, dynamic scaling,

and smart queues, without compromising operational

simplicity. The application of these methods in

cloud-native orchestration systems like Kubernetes

and Knative only makes these methods even more

effective, as service providers can provide

predictable performance without losing the

scalability that serverless systems provide. Empirical

experiments and real-life examples support the

argument that adaptive scheduling is not only the way

of the better latency and adherence to SLA, but also

a way of more economical and efficient cloud-based

operations. The further development of serverless

platforms should be directed at the enhancement of

AI-based scheduling models, investigating the idea of

cross-region adaptive scaling, and the introduction of

observability-driven optimization loops responding

to the metrics of both the application performance

and user experience in real-time. Finally, the adaptive

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4373

resource scheduling will be one of the backbones of

the next generation of resilient, performant, and

intelligent cloud-native services.

References

[1]. Shafiei, H., Khonsari, A., & Mousavi, P.

(2022). Serverless computing: a survey of

opportunities, challenges, and applications.

ACM Computing Surveys, 54(11s), 1-32.

[2]. Baldini, I., Castro, P., Chang, K., Cheng, P.,

Fink, S., Ishakian, V., ... & Suter, P. (2017).

Serverless computing: Current trends and

open problems. In Research advances in

cloud computing (pp. 1-20). Singapore:

Springer Singapore.

[3]. Yu, T., Liu, Q., Du, D., Xia, Y., Zang, B., Lu,

Z., ... & Chen, H. (2020, October).

Characterizing serverless platforms with

serverlessbench. In Proceedings of the 11th

ACM Symposium on Cloud Computing (pp.

30-44).

[4]. Jonas, E., Schleier-Smith, J., Sreekanti, V.,

Tsai, C. C., Khandelwal, A., Pu, Q., ... &

Patterson, D. A. (2019). Cloud programming

simplified: A Berkeley view on serverless

computing. arXiv preprint arXiv:1902.03383.

[5]. Baldini, I., Cheng, P., Fink, S. J., Mitchell, N.,

Muthusamy, V., Rabbah, R., ... & Tardieu, O.

(2017, October). The serverless trilemma:

Function composition for serverless

computing. In Proceedings of the 2017 ACM

SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on

Programming and Software (pp. 89-103).

[6]. Saxena, S. (2025). Multi-Tenant Resource

Management in Serverless Distributed Data

Systems: Efficient Workload Isolation, Burst

Capacity Planning, and Auto-Scaling. Journal

of Computer Science and Technology

Studies, 7(8), 533-539.

[7]. Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., &

Guo, M. (2022). The serverless computing

survey: A technical primer for design

architecture. ACM Computing Surveys

(CSUR), 54(10s), 1-34.

[8]. Fu, Y., Xue, L., Huang, Y., Brabete, A. O.,

Ustiugov, D., Patel, Y., & Mai, L. (2024).

{ServerlessLLM}:{Low-Latency} serverless

inference for large language models. In 18th

USENIX Symposium on Operating Systems

Design and Implementation (OSDI 24) (pp.

135-153).

[9]. Carreira, J., Kohli, S., Bruno, R., & Fonseca,

P. (2021, June). From warm to hot starts:

Leveraging runtimes for the serverless era. In

Proceedings of the workshop on hot topics in

operating systems (pp. 58-64).

[10]. Hellerstein, J. M., Faleiro, J., Gonzalez, J. E.,

Schleier-Smith, J., Sreekanti, V., Tumanov,

A., & Wu, C. (2018). Serverless computing:

One step forward, two steps back. arXiv

preprint arXiv:1812.03651.

[11]. Qi, S., Monis, L., Zeng, Z., Wang, I. C., &

Ramakrishnan, K. K. (2022, August).

Spright: extracting the server from serverless

computing! high-performance EBPF-based

event-driven, shared-memory processing. In

Proceedings of the ACM SIGCOMM 2022

Conference (pp. 780-794).

[12]. Adzic, G., & Chatley, R. (2017, August).

Serverless computing: economic and

architectural impact. In Proceedings of the

2017 11th joint meeting on foundations of

software engineering (pp. 884-889).

[13]. Farid, M., Lim, H. S., Lee, C. P., Zarakovitis,

C. C., & Chien, S. F. (2025). Optimizing

Kubernetes with Multi-Objective Scheduling

Algorithms: A 5G Perspective. Computers,

14(9), 390.

[14]. Parvathinathan, K. Containerized Inference

Scaling: Kubernetes vs. Serverless

Architectures for Real-Time ML Services.

[15]. Khan, M. A. N. H. (2025). Minimizing Cold

Starts in Serverless Environments with

Predictive Optimization Approach Using Bi-

LSTM and Genetic Algorithms (Doctoral

dissertation, Dublin, National College of

Ireland).

[16]. Wang, L., Jiang, Y., & Mi, N. (2024,

December). Advancing serverless computing

for scalable AI model inference: Challenges

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 02 Issue: 12 December 2025

Page No: 4368-4374

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0639

International Research Journal on Advanced Engineering Hub (IRJAEH)

4374

and opportunities. In Proceedings of the 10th

International Workshop on Serverless

Computing (pp. 1-6).

[17]. Niu, Z., Tang, S., & He, B. (2016). An

adaptive efficiency-fairness meta-scheduler

for data-intensive computing. IEEE

Transactions on Services Computing, 12(6),

865-879.

[18]. Zhong, Z., & Buyya, R. (2020). A cost-

efficient container orchestration strategy in

Kubernetes-based cloud computing

infrastructures with heterogeneous resources.

ACM Transactions on Internet Technology

(TOIT), 20(2), 1-24.

[19]. Lannurien, V., D’orazio, L., Barais, O., &

Boukhobza, J. (2023). Serverless cloud

computing: State of the art and challenges.

Serverless Computing: Principles and

Paradigms, 275-316.

[20]. Isstaif, A. A. T., & Mortier, R. (2023, May).

Towards latency-aware Linux scheduling for

serverless workloads. In Proceedings of the

1st Workshop on Serverless Systems,

Applications and Methodologies (pp. 19-26).

https://irjaeh.com/

