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Abstract

Urban flooding presents a serious threat to hu- man safety, transportation systems, and public infrastructure.
This study proposesan image processing and deep learning- based framework for analyzing flood-prone areas
using satellite imagery. The approach integrates optical and radar satellite data to identify flood-affected
zones using spectral indices and temporal change detection techniques. Using a Convolutional Neural
Network (CNN) model based on VGG16, the system classifies satellite images into flooded and non-flooded
categories. The model achieved an accuracy of approximately 96 percent, demonstrating its potential to
support disaster management teams in timely decision-making. The results highlight the utility of combining
deep learning with remote sensing data for flood impact assessment and disaster mitigation.
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1. Introduction

Floods are among the most frequent and devastating
natural disasters, causing extensive damage to
property, agriculture, and human lives. Traditional
flood assessment methods rely on manual ground
surveys, which are time-consuming and often
infeasible during emergencies. Recent advancements
in remote sensing and deep learning provide
opportunities for automated flood detection using
satellite images. This paper presents a deep learning-
based flood area analysis system that classifies and
maps flooded regions using multi-temporal satellite
data.

2. Literature Review

Flood detection and mapping using satellite imagery
have gained significant attention in recent years due
to advancements in remote sensing and machine
learning techniques. Various researchers have
explored data-driven approaches for flood
monitoring, leveraging both optical and radar data
sources to improve accuracy and reliability. [1]
proposed an urban flood detection framework using
Spectimagery integrated with machine learning
models, demonstrating the potential for rapid and
accurate flood identification in urban settings.
Similarly, Zhao et al. [2] reviewed recent advances in
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SAR-based urban flood mapping, high- lighting the
robustness of radar imagery under challenging
atmospheric conditions. Hussein et al. [3] developed
a hybrid Multi-Verse Optimization Algorithm
(MVOA) with Support Vector Machine (SVM) for
flood monitoring, achieving remarkable accuracy in
classification and prediction. Galanopoulos et al. [4]
demonstrated the use of Sentinel-2 imagery for real-
time crisis management, emphasizing its application
in flood detection and response systems. Several
studies have explored the integration of remote
sensing data for large-scale flood mapping. Remote
Sensing for Flood Mapping and Monitoring [5]
presented an extensive analysis of multi-spectral
satellite data for flood assessment, while Flood
Inundation Monitoring Using Multi-Source Satel- lite
Imagery [6] utilized heterogeneous datasets to
enhance spatiotemporal flood detection accuracy.
works have focused on improving flood mapping
precision through advanced image processing. A
Flash Flood Detected Area Using Classification-
Based Image Processing for Sentinel-2 Satellites
Data [7] proposed an automatic classification
framework, while He et al. [8] introduced a weakly
supervised semantic segmentation model for efficient
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urban flood mapping, providing reliable results even
with limited labeled data.

Early warning and predictive modeling have also
evolved with Al-driven approaches. B.J.and S. T. P.
[9] proposed an early flood detection and
environmental monitoring system using sensor fusion
techniques. Stateczny et al. [10] presented an
optimized deep learning model for flood detection
using high-resolution satellite images [11] presented
spectral image further demonstrating the of deep
networks for flood risk management. While
significant progress has been achieved, several
challenges persist in operational flood monitoring.
These include data inconsistency due to varying
satellite resolutions, the high cost of processing large
datasets, and the difficulty of real- time analysis
under dynamic weather conditions. Moreover,
despite deep learning’s success, generalizing models
across diverse geographies remains a key limitation,
as most current models are region-specific and
depend heavily on the quality of training data. In
summary, the literature reflects a consistent trend
toward Al-driven, cloud-based flood analysis
frameworks capable of processing real-time satellite
data. These approaches have enhanced detection
precision, scalability, and automation. How- ever,
further improvements in model generalization,
computational efficiency, and predictive modeling
are essential to make these systems suitable for global
disaster response. The proposed system in this study
builds upon these foundations by integrating deep
learning (CNN-VGG16) with Google Earth Engine
for automated flood detection, impact assessment,
and decision support.

3. Methodology

The proposed system utilizes a cloud-based, image
processing framework, primarily hosted on Google
Earth Engine (GEE), to rapidly detect and analyze
flood-affected areas. The process begins with data
acquisition of multi-temporal satellite imagery,
prioritizing Sentinel-1 Synthetic Aperture Radar
(SAR) due to its all-weather capability, which
undergoes essential pre-processing like speckle
filtering and alignment. Flood detection is then
achieved through a multi-method approach: a Deep
Learning Segmentation model (CNN-VGG16)
classifies pixels as flooded/non-flooded,
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complemented by Temporal Change Detection logic
on SAR backscatter and Spectral Index
(NDWI/MNDWI) analysis on optical data. Fi- nally,
the resulting flood extent map is overlaid with
ancillary data (e.g., DEM, road networks) to perform
a quantitative Flood Impact Assessment, providing
actionable intelligence via a web interface for timely
disaster response.
3.1. System Architecture

The architecture of the Flood Area Analysis system
is modular and cloud-distributed, involving five
principal constituents. The Data Input Layer is the
first, comprising raw satellite imagery (Sentinel-1
SAR, Sentinel-2 Optical) and necessary ancillary
data (DEM, road networks). It is the direct source for
triggering data processing. The second module, the
Pre-processing Pipeline, conducts cloud-based
functions like SAR speckle filtering, geometric
correction, and multi- temporal image alignment,
optimized for large-scale efficiency. The third
module is the Flood Detection Module, designed to
run the core Al and analytical techniques, including
the CNN- VGG16 model and Change Detection
algorithms. The fourth
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Figure 1 Flood Monitoring System Architecture)

piece, the Analysis Module, serves to delineate flood
extent, calculate total inundated area, and perform
Flood Impact Assessment by overlaying results with
infrastructure data. Last but not least, the
Output/Decision  Support Layer manages the
visualization and generation of reports. The system
architecture as a whole, shown in the figure 1 above,
illustrates how the components seamlessly work
together. Satellite data is collected and fed through
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the Pre- processing Pipeline for cleaning and
alignment. The prepared data is processed by the
Flood Detection Module for segmen- tation and
analysis. The processed data is then utilized by the
Analysis Module, enabling intelligent impact
quantification. Users interact with and access this
information naturally through the Web Application,
while the cloud backend ensures high performance
and scalability necessary for processing large
geospatial data.

3.2. Hardware Design
The hardware architecture of the Flood Area Analysis
system is focused on obtaining an optimal trade-off
among processing power, scalability, and data
accessibility. The system is equipped with Cloud
Computing Clusters provided by the Google Earth
Engine (GEE) platform, ensuring massive parallel
processing capability, necessary for handling large-
scale, high-resolution raster data. At its core, the
system employs GEE’s distributed processing units
supported by optimized server-side functions to
efficiently handle the multi- temporal change
detection and resource-intensive Deep Learning
inference tasks. The data storage subsystem consists
of the GEE Data Catalog complemented by internal
cloud storage for model parameters, intermediate
processing files, and final raster/vector output
requirements. Client-side access is facilitated through
standard internet connectivity and a Web Browser,
enabling seamless visualization with the GEE Map
API. Processing is primarily managed by the Cloud
Infrastructure, but a local High-Performance
Workstation (with GPU) is essential for initial model
training and validation. The entire system prioritizes
a cloud-native design, allowing for dynamic resource
allocation for rapid disaster response.
4. Results
The developed flood analysis framework was
evaluated using Sentinel-1 Synthetic Aperture Radar
(SAR) imagery integrated with the VGG16
convolutional neural network (CNN), shown in
Figure 2, 3 & 4.
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Figure 3 Flood Area Detection and Risk Analysis
Dashboard

Figure 4 Flood Analysis

architecture. The model demonstrated strong flood
detection capabilities, accurately distinguishing
between inundated and non-inundated regions across
multiple geospatial datasets. The evaluation was
performed on over 4,500 satellite image tiles, each of
256256 pixels, covering various flood-prone zones
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in Maharashtra, India. The dataset was divided into
an 80:20 ratio for training and validation, ensuring
sufficient diversity for model generalization.
Preprocessing involved radiometric calibration,
terrain correction, and speckle noise reduction to
improve SAR image quality. The Google Earth
Engine (GEE) platform facilitated large-scale image
preprocessing and dataset management, while the
training and validation were conducted using Tensor-
Flow with the Adam optimizer (learning rate = 0.001,
batch size = 32). The model converged steadily over
50 epochs, achieving a training accuracy of 97.23
percent and a validation accuracy of 95.86 percent,
indicating strong consistency and effective learning
without overfitting. Further statistical analysis
revealed that the model achieved a precision of 95.2
percent, recall of 94.6 percent, and an Fl-score of
94.9 percent on the validation set. These results
highlight the framework’s ability to correctly identify
flooded areas while minimizing false detections. The
Intersection over Union (loU) metric exceeded 91
percent, confirming accurate pixel-wise
segmentation between predicted flood masks and the
corresponding ground truth data. The confusion
matrix analysis also showed that the false-negative
rate was under 4 percent, emphasizing that most
flooded zones were successfully detected—a crucial
aspect for emergency decision support systems. The
model’s segmentation output provided high-
resolution binary masks that precisely mapped the
spatial distribution of water coverage. When
overlayed on Sentinel-1 SAR  backscatter
composites, the detected flood zones corresponded
closely to low-intensity regions typical of inundation
events. Visual evaluation confirmed clear delineation
between water bodies, vegetation, and built-up areas.
As shown in Fig. 3, the segmented output effectively
traced flood boundaries, even under heavy cloud
interference or vegetation cover, proving the
robustness of SAR data and deep learning integration.
Spatial validation using ground-truth data from the
Central Water Commission (CWC) reports
confirmed an average spatial accuracy of
92.4percent. The temporal analysis using multi-date
SAR imagery demonstrated the framework’s ability
to monitor flood dynamics over time, highlighting
newly affected regions and receding water levels.
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This capability is particularly beneficial for disaster
management authorities, as it enables near real-time
tracking of flood propagation and assists in the
allocation of relief resources. Comparative
assessments with other architectures, including U-
Net and ResNet50, were also conducted. Although U-
Net displayed slightly faster convergence during
training, it was less effective in boundary definition
for large-scale flood extents. ResNet50 achieved
comparable accuracy but required significantly more
computational resources, making VGG16 a more
efficient choice for large-scale, cloud-based
geospatial processing. Traditional classifiers such as
Random Forest achieved an average accuracy of only
87 percent, reaffirming the superiority of deep
learning approaches for feature-rich SAR data. The
quantitative and visual results collectively establish
that the proposed VGG16-based flood detection
system is reliable, scalable, and effective in
processing complex geospatial data. Its integration
with  Google Earth Engine ensures high
computational efficiency and accessibility for large-
area flood mapping. The findings confirm that
combining deep learning and remote sensing can
significantly enhance the speed, accuracy, and
practicality of disaster management systems. The
model’s ability to produce consistent results across
varied environmental conditions validates its
suitability for real-time operational deployment in
national and regional flood monitoring programs,
shown in Table 1.

Table 1 Flood Detection Results Using Sentinel-1
Sar Data and VVgg16 Model

Lat Long Conf.
No. Status
N) (°E) (%)
1 20.005 | 73.789 | Flooded 96.4
Non-
2 20.012 | 73.781 Flooded 94.8
3 19.998 | 73.776 | Flooded 97.1
4 19.985 | 73.772 | Flooded 95.9
Non-
5 19.972 | 73.763 Flooded 93.6
6 19.957 | 73.754 | Flooded 96.8
7 19.945 | 73.749 | Flooded 97.5
8 19.932 | 73.742 Non- 94.2
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Flooded
9 19.918 | 73.738 | Flooded 96.1
Non-
10 19.905 | 73.729 Flooded 95.3
11 19.893 | 73.718 | Flooded 97.8
12 19.880 | 73.707 | Flooded 96.0
Non-
13 19.868 | 73.698 Flooded 93.9
14 19.854 | 73.689 | Flooded 95.7
Non-
15 19.842 | 73.678 Flooded 94.5

5. Discussion

The integration of Sentinel-1 SAR data with the
VGG16 convolutional neural network (CNN) proved
to be highly effec- tive for flood area detection and
analysis. The system achieved consistent accuracy
across multiple  datasets, indicating strong
generalization and adaptability to diverse terrain and
climatic conditions. The all-weather imaging
capability of SAR data allowed the model to perform
reliably even under cloud cover, while deep learning-
based feature extraction ensured  precise
differentiation between flooded and non-flooded
areas. The results validated the robustness of the
approach, with accuracy levels exceeding 95 percent
and spatial segmentation performance confirmed
through high F1-scores and Intersection over Union
(loU) metrics. The visual results (see Fig. 3)
demonstrated the system’s ability to accurately
delineate water-covered regions and retain fine
boundary details, such as river channels and low-
lying floodplains. The model effectively highlighted
temporal variations in flood extent when tested on
multi-date SAR imagery, providing a clear view of
how water spread and receded across the affected
region. By overlaying flood maps with ancillary
layers such as population and infrastructure data, the
frame- work offers critical insights for damage
assessment, resource prioritization, and emergency
response planning, making it suitable for real-time
decision support in disaster management. When
compared with other architectures such as U-Net and
ResNet50, the proposed VGG16-based model
achieved an op- timal balance between accuracy and
computational efficiency. While U-Net exhibited
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faster convergence, it performed less effectively in
handling complex surface textures and bound- ary
segmentation. ResNet50 achieved similar accuracy
but required significantly higher computational
resources. The integration of the VGG16 model with
the Google Earth Engine (GEE) further enhanced
scalability and processing speed, allowing large-scale
geospatial analysis without dependence on local
hardware. Despite its effectiveness, minor limitations
were identified. The model occasionally
misclassified saturated agricultural zones and
shadowed regions due to similar radar backscatter
intensities. These errors could be mitigated in future
work by incorporating multi-sensor data fusion
(combining SAR and optical imagery) and by
applying attention-based deep learning architectures
to improve contextual understanding. Overall, the
findings emphasize that the proposed system
provides a reliable, automated, and scalable approach
for flood detection, establishing a foundation for
predictive flood modeling and climate-resilient
infrastructure planning.
Conclusion
The study demonstrates the effectiveness of
integrating satellite imagery with deep learning
techniques (VGG16) for accurate flood area
classification and analysis. The framework provides
reliable identification of flooded and non-flooded
regions, achieving an accuracy of approximately 96
percent, which confirms its strong applicability in
real-world flood sce- narios. Through efficient
handling of various input conditions and user-
friendly visualization, the model enhances the
process of flood detection and assessment. The
integration of remote sensing data and Al-driven
models highlights the potential of geospatial analytics
in supporting disaster management, infras- tructure
planning, and environmental monitoring. This work
establishes a scalable and data-driven approach that
contributes to timely decision-making and improved
preparedness against future flood events.
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