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Abstract 

Urban flooding presents a serious threat to hu- man safety, transportation systems, and public infrastructure. 

This study proposesan image processing and deep learning- based framework for analyzing flood-prone areas 

using satellite imagery. The approach integrates optical and radar satellite data to identify flood-affected 

zones using spectral indices and temporal change detection techniques. Using a Convolutional Neural 

Network (CNN) model based on VGG16, the system classifies satellite images into flooded and non-flooded 

categories. The model achieved an accuracy of approximately 96 percent, demonstrating its potential to 

support disaster management teams in timely decision-making. The results highlight the utility of combining 

deep learning with remote sensing data for flood impact assessment and disaster mitigation.  

Keywords: Flood Detection, Satellite Imagery, Remote Sensing, Deep Learning, Disaster Management, 

Change Detection.  

 

1. Introduction  

Floods are among the most frequent and devastating 

natural disasters, causing extensive damage to 

property, agriculture, and human lives. Traditional 

flood assessment methods rely on manual ground 

surveys, which are time-consuming and often 

infeasible during emergencies. Recent advancements 

in remote sensing and deep learning provide 

opportunities for automated flood detection using 

satellite images. This paper presents a deep learning-

based flood area analysis system that classifies and 

maps flooded regions using multi-temporal satellite 

data. 

2. Literature Review 

Flood detection and mapping using satellite imagery 

have gained significant attention in recent years due 

to advancements in remote sensing and machine 

learning techniques. Various researchers have 

explored data-driven approaches for flood 

monitoring, leveraging both optical and radar data 

sources to improve accuracy and reliability. [1] 

proposed an urban flood detection framework using 

Spectimagery integrated with machine learning 

models, demonstrating the potential for rapid and 

accurate flood identification in urban settings. 

Similarly, Zhao et al. [2] reviewed recent advances in 

SAR-based urban flood mapping, high- lighting the 

robustness of radar imagery under challenging 

atmospheric conditions. Hussein et al. [3] developed 

a hybrid Multi-Verse Optimization Algorithm 

(MVOA) with Support Vector Machine (SVM) for 

flood monitoring, achieving remarkable accuracy in 

classification and prediction. Galanopoulos et al. [4] 

demonstrated the use of Sentinel-2 imagery for real-

time crisis management, emphasizing its application 

in flood detection and response systems. Several 

studies have explored the integration of remote 

sensing data for large-scale flood mapping. Remote 

Sensing for Flood Mapping and Monitoring [5] 

presented an extensive analysis of multi-spectral 

satellite data for flood assessment, while Flood 

Inundation Monitoring Using Multi-Source Satel- lite 

Imagery [6] utilized heterogeneous datasets to 

enhance spatiotemporal flood detection accuracy. 

works have focused on improving flood mapping 

precision through advanced image processing. A 

Flash Flood Detected Area Using Classification-

Based Image Processing for Sentinel-2 Satellites 

Data [7] proposed an automatic classification 

framework, while He et al. [8] introduced a weakly 

supervised semantic segmentation model for efficient 
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urban flood mapping, providing reliable results even 

with limited labeled data. 

Early warning and predictive modeling have also 

evolved with AI-driven approaches. B. J. and S. T. P. 

[9] proposed an early flood detection and 

environmental monitoring system using sensor fusion 

techniques. Stateczny et al. [10] presented an 

optimized deep learning model for flood detection 

using high-resolution satellite images [11] presented 

spectral image further demonstrating the of deep 

networks for flood risk management. While 

significant progress has been achieved, several 

challenges persist in operational flood monitoring. 

These include data inconsistency due to varying 

satellite resolutions, the high cost of processing large 

datasets, and the difficulty of real- time analysis 

under dynamic weather conditions. Moreover, 

despite deep learning’s success, generalizing models 

across diverse geographies remains a key limitation, 

as most current models are region-specific and 

depend heavily on the quality of training data. In 

summary, the literature reflects a consistent trend 

toward AI-driven, cloud-based flood analysis 

frameworks capable of processing real-time satellite 

data. These approaches have enhanced detection 

precision, scalability, and automation. How- ever, 

further improvements in model generalization, 

computational efficiency, and predictive modeling 

are essential to make these systems suitable for global 

disaster response. The proposed system in this study 

builds upon these foundations by integrating deep 

learning (CNN-VGG16) with Google Earth Engine 

for automated flood detection, impact assessment, 

and decision support. 

3. Methodology  

The proposed system utilizes a cloud-based, image 

processing framework, primarily hosted on Google 

Earth Engine (GEE), to rapidly detect and analyze 

flood-affected areas. The process begins with data 

acquisition of multi-temporal satellite imagery, 

prioritizing Sentinel-1 Synthetic Aperture Radar 

(SAR) due to its all-weather capability, which 

undergoes essential pre-processing like speckle 

filtering and alignment. Flood detection is then 

achieved through a multi-method approach: a Deep 

Learning Segmentation model (CNN-VGG16) 

classifies pixels as flooded/non-flooded, 

complemented by Temporal Change Detection logic 

on SAR backscatter and Spectral Index 

(NDWI/MNDWI) analysis on optical data. Fi- nally, 

the resulting flood extent map is overlaid with 

ancillary data (e.g., DEM, road networks) to perform 

a quantitative Flood Impact Assessment, providing 

actionable intelligence via a web interface for timely 

disaster response. 

3.1. System Architecture 

The architecture of the Flood Area Analysis system 

is modular and cloud-distributed, involving five 

principal constituents. The Data Input Layer is the 

first, comprising raw satellite imagery (Sentinel-1 

SAR, Sentinel-2 Optical) and necessary ancillary 

data (DEM, road networks). It is the direct source for 

triggering data processing. The second module, the 

Pre-processing Pipeline, conducts cloud-based 

functions like SAR speckle filtering, geometric 

correction, and multi- temporal image alignment, 

optimized for large-scale efficiency. The third 

module is the Flood Detection Module, designed to 

run the core AI and analytical techniques, including 

the CNN- VGG16 model and Change Detection 

algorithms. The fourth 

  

 

 
Figure 1 Flood Monitoring System Architecture) 

 

 

piece, the Analysis Module, serves to delineate flood 

extent, calculate total inundated area, and perform 

Flood Impact Assessment by overlaying results with 

infrastructure data. Last but not least, the 

Output/Decision Support Layer manages the 

visualization and generation of reports. The system 

architecture as a whole, shown in the figure 1 above, 

illustrates how the components seamlessly work 

together. Satellite data is collected and fed through 
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the Pre- processing Pipeline for cleaning and 

alignment. The prepared data is processed by the 

Flood Detection Module for segmen- tation and 

analysis. The processed data is then utilized by the 

Analysis Module, enabling intelligent impact 

quantification. Users interact with and access this 

information naturally through the Web Application, 

while the cloud backend ensures high performance 

and scalability necessary for processing large 

geospatial data. 

3.2. Hardware Design 

The hardware architecture of the Flood Area Analysis 

system is focused on obtaining an optimal trade-off 

among processing power, scalability, and data 

accessibility. The system is equipped with Cloud 

Computing Clusters provided by the Google Earth 

Engine (GEE) platform, ensuring massive parallel 

processing capability, necessary for handling large- 

scale, high-resolution raster data. At its core, the 

system employs GEE’s distributed processing units 

supported by optimized server-side functions to 

efficiently handle the multi- temporal change 

detection and resource-intensive Deep Learning 

inference tasks. The data storage subsystem consists 

of the GEE Data Catalog complemented by internal 

cloud storage for model parameters, intermediate 

processing files, and final raster/vector output 

requirements. Client-side access is facilitated through 

standard internet connectivity and a Web Browser, 

enabling seamless visualization with the GEE Map 

API. Processing is primarily managed by the Cloud 

Infrastructure, but a local High-Performance 

Workstation (with GPU) is essential for initial model 

training and validation. The entire system prioritizes 

a cloud-native design, allowing for dynamic resource 

allocation for rapid disaster response. 

4. Results 

The developed flood analysis framework was 

evaluated using Sentinel-1 Synthetic Aperture Radar 

(SAR) imagery integrated with the VGG16 

convolutional neural network (CNN), shown in 

Figure 2, 3 & 4. 

  

 
Figure 2 Flood Monitoring System Architecture) 
 

 
Figure 3 Flood Area Detection and Risk Analysis 

Dashboard 

 

 
Figure 4 Flood Analysis 

  

architecture. The model demonstrated strong flood 

detection capabilities, accurately distinguishing 

between inundated and non-inundated regions across 

multiple geospatial datasets. The evaluation was 

performed on over 4,500 satellite image tiles, each of 

256×256 pixels, covering various flood-prone zones 
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in Maharashtra, India. The dataset was divided into 

an 80:20 ratio for training and validation, ensuring 

sufficient diversity for model generalization. 

Preprocessing involved radiometric calibration, 

terrain correction, and speckle noise reduction to 

improve SAR image quality. The Google Earth 

Engine (GEE) platform facilitated large-scale image 

preprocessing and dataset management, while the 

training and validation were conducted using Tensor- 

Flow with the Adam optimizer (learning rate = 0.001, 

batch size = 32). The model converged steadily over 

50 epochs, achieving a training accuracy of 97.23 

percent and a validation accuracy of 95.86 percent, 

indicating strong consistency and effective learning 

without overfitting. Further statistical analysis 

revealed that the model achieved a precision of 95.2 

percent, recall of 94.6 percent, and an F1-score of 

94.9 percent on the validation set. These results 

highlight the framework’s ability to correctly identify 

flooded areas while minimizing false detections. The 

Intersection over Union (IoU) metric exceeded 91 

percent, confirming accurate pixel-wise 

segmentation between predicted flood masks and the 

corresponding ground truth data. The confusion 

matrix analysis also showed that the false-negative 

rate was under 4 percent, emphasizing that most 

flooded zones were successfully detected—a crucial 

aspect for emergency decision support systems. The 

model’s segmentation output provided high-

resolution binary masks that precisely mapped the 

spatial distribution of water coverage. When 

overlayed on Sentinel-1 SAR backscatter 

composites, the detected flood zones corresponded 

closely to low-intensity regions typical of inundation 

events. Visual evaluation confirmed clear delineation 

between water bodies, vegetation, and built-up areas. 

As shown in Fig. 3, the segmented output effectively 

traced flood boundaries, even under heavy cloud 

interference or vegetation cover, proving the 

robustness of SAR data and deep learning integration. 

Spatial validation using ground-truth data from the 

Central Water Commission (CWC) reports 

confirmed an average spatial accuracy of 

92.4percent. The temporal analysis using multi-date 

SAR imagery demonstrated the framework’s ability 

to monitor flood dynamics over time, highlighting 

newly affected regions and receding water levels. 

This capability is particularly beneficial for disaster 

management authorities, as it enables near real-time 

tracking of flood propagation and assists in the 

allocation of relief resources. Comparative 

assessments with other architectures, including U-

Net and ResNet50, were also conducted. Although U- 

Net displayed slightly faster convergence during 

training, it was less effective in boundary definition 

for large-scale flood extents. ResNet50 achieved 

comparable accuracy but required significantly more 

computational resources, making VGG16 a more 

efficient choice for large-scale, cloud-based 

geospatial processing. Traditional classifiers such as 

Random Forest achieved an average accuracy of only 

87 percent, reaffirming the superiority of deep 

learning approaches for feature-rich SAR data. The 

quantitative and visual results collectively establish 

that the proposed VGG16-based flood detection 

system is reliable, scalable, and effective in 

processing complex geospatial data. Its integration 

with Google Earth Engine ensures high 

computational efficiency and accessibility for large-

area flood mapping. The findings confirm that 

combining deep learning and remote sensing can 

significantly enhance the speed, accuracy, and 

practicality of disaster management systems. The 

model’s ability to produce consistent results across 

varied environmental conditions validates its 

suitability for real-time operational deployment in 

national and regional flood monitoring programs, 

shown in Table 1. 

 

Table 1 Flood Detection Results Using Sentinel-1 

Sar Data and Vgg16 Model 

No. 
Lat 

(◦N) 

Long 

(◦E) 
Status 

Conf. 

(%) 

1 20.005 73.789 Flooded 96.4 

2 20.012 73.781 
Non-

Flooded 
94.8 

3 19.998 73.776 Flooded 97.1 

4 19.985 73.772 Flooded 95.9 

5 19.972 73.763 
Non-

Flooded 
93.6 

6 19.957 73.754 Flooded 96.8 

7 19.945 73.749 Flooded 97.5 

8 19.932 73.742 Non- 94.2 
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Flooded 

9 19.918 73.738 Flooded 96.1 

10 19.905 73.729 
Non-

Flooded 
95.3 

11 19.893 73.718 Flooded 97.8 

12 19.880 73.707 Flooded 96.0 

13 19.868 73.698 
Non-

Flooded 
93.9 

14 19.854 73.689 Flooded 95.7 

15 19.842 73.678 
Non-

Flooded 
94.5 

 

5. Discussion 

The integration of Sentinel-1 SAR data with the 

VGG16 convolutional neural network (CNN) proved 

to be highly effec- tive for flood area detection and 

analysis. The system achieved consistent accuracy 

across multiple datasets, indicating strong 

generalization and adaptability to diverse terrain and 

climatic conditions. The all-weather imaging 

capability of SAR data allowed the model to perform 

reliably even under cloud cover, while deep learning-

based feature extraction ensured precise 

differentiation between flooded and non-flooded 

areas. The results validated the robustness of the 

approach, with accuracy levels exceeding 95 percent 

and spatial segmentation performance confirmed 

through high F1-scores and Intersection over Union 

(IoU) metrics. The visual results (see Fig. 3) 

demonstrated the system’s ability to accurately 

delineate water-covered regions and retain fine 

boundary details, such as river channels and low-

lying floodplains. The model effectively highlighted 

temporal variations in flood extent when tested on 

multi-date SAR imagery, providing a clear view of 

how water spread and receded across the affected 

region. By overlaying flood maps with ancillary 

layers such as population and infrastructure data, the 

frame- work offers critical insights for damage 

assessment, resource prioritization, and emergency 

response planning, making it suitable for real-time 

decision support in disaster management. When 

compared with other architectures such as U-Net and 

ResNet50, the proposed VGG16-based model 

achieved an op- timal balance between accuracy and 

computational efficiency. While U-Net exhibited 

faster convergence, it performed less effectively in 

handling complex surface textures and bound- ary 

segmentation. ResNet50 achieved similar accuracy 

but required significantly higher computational 

resources. The integration of the VGG16 model with 

the Google Earth Engine (GEE) further enhanced 

scalability and processing speed, allowing large-scale 

geospatial analysis without dependence on local 

hardware. Despite its effectiveness, minor limitations 

were identified. The model occasionally 

misclassified saturated agricultural zones and 

shadowed regions due to similar radar backscatter 

intensities. These errors could be mitigated in future 

work by incorporating multi-sensor data fusion 

(combining SAR and optical imagery) and by 

applying attention-based deep learning architectures 

to improve contextual understanding. Overall, the 

findings emphasize that the proposed system 

provides a reliable, automated, and scalable approach 

for flood detection, establishing a foundation for 

predictive flood modeling and climate-resilient 

infrastructure planning. 

Conclusion 

The study demonstrates the effectiveness of 

integrating satellite imagery with deep learning 

techniques (VGG16) for accurate flood area 

classification and analysis. The framework provides 

reliable identification of flooded and non-flooded 

regions, achieving an accuracy of approximately 96 

percent, which confirms its strong applicability in 

real-world flood sce- narios. Through efficient 

handling of various input conditions and user-

friendly visualization, the model enhances the 

process of flood detection and assessment. The 

integration of remote sensing data and AI-driven 

models highlights the potential of geospatial analytics 

in supporting disaster management, infras- tructure 

planning, and environmental monitoring. This work 

establishes a scalable and data-driven approach that 

contributes to timely decision-making and improved 

preparedness against future flood events. 
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