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Abstract

This project presents a strong and efficient system for real-time recognition of American Sign Language (ASL),
aiming to improve accessibility and communication. The proposed system utilizes a custom dataset that
includes ASL gestures, numerical signs from 0 to 9, and essential functional signs such as “Delete” and
“Space.” By leveraging Media Pipe, hand landmarks are extr“cted t” prov“de a |”ghtweight yet effective
representation of gestures, ensuring an efficient preprocessing pipeline. The extracted hand landmarks are
then processed by an Artificial Neural Network (ANN), which is trained to classify gestures with high
precision. The system is designed to function in real-time, seamlessly integrating with a web-based platform
to enable live gesture detection and interpretation. Through meticulous data preprocessing, landmark
extraction, and ANN-based training, the model achieves both scalability and high accuracy A dependable and
efficient system developed for real-time American Sign Language (ASL) recognition. A key aspect of this
project is its emphasis on multi-cultural sign language support, laying the foundation for future expansions
beyond ASL. Integrating deep learning techniques strengthens the system's reliability and performance,
ensuring reliable recognition across different environments. Additionally, the integration of Media Pipe
ensures computational efficiency, making the system practical for deployment on various platforms, including
web and mobile applications. Overall, this project offers a scalable, real-time, and accurate solution for
gesture recognition, contributing Contributing to the progress of assistive technologies designed to improve
communication for individuals who are deaf or hard of hearing continues to evolve. Future developments may
involve integrating more sign languages, implementing advanced gesture recognition, and optimizing
performance for low-power devices, thereby enhancing the system’s functionality and reach.

Keywords: American Sign Language (ASL), Real-Time Recognition, MediaPipe Landmarks, Artificial Neural
Network (ANN), Assistive Technology

1. Introduction

Sign  language is essential for enabling different datasets, making them less practical for

communication among individuals with hearing and
speech disabilities, allowing them to convey their
thoughts and emotions efficiently. Among the
various forms of sign language, American Sign
Language (ASL) is one of the most widely used. One
of the most widely recognized.one of the most widely
used. Consisting of distinct gestures, symbols, and
hand movements. However, traditional sign language
recognition systems often struggle with real-time
processing, accuracy, and generalization across
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daily use. With advancements in utilizing computer
vision and deep learning techniques for recognizing
sign language has seen significant improvements, but
challenges still remain. Many existing models require
extensive computational resources, limiting their
real- world deployment, especially on edge devices
or web-based platforms. Additionally, recognizing
dynamic hand gestures accurately in varying lighting,
Additionally, recognizing dynamic hand gestures
accurately in  varying lighting  conditions,
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orientations, and backgrounds poses a significant
hurdle. This project aims to overcome these
challenges by developing an efficient and scalable
ASL recognition system that integrates MediaPipe
for hand landmark extraction and an Artificial Neural
Network (ANN) for classification. The system is
designed to be lightweight, ensuring real-time
recognition of ASL gestures, numbers (0- 9), and
functional signs like “Delete” and “Space.” It
seamlessly integrates with a web-based interface,
allowing users to interact effortlessly. By leveraging
deep learning techniques and optimizing data
preprocessing, this project strives to create a practical
solution  for  gesture-based = communication,
promoting accessibility and inclusivity for sign
language users. By leveraging deep learning
techniques and optimizing data preprocessing, this
project strives to create a practical solution for
gesture-based communication, promoting
accessibility and inclusivity for sign language users.
2. Related Work

Various technologies have been utilized in the
development of sign language recognition (SLR)
systems based on hand gestures, a combination of
manually crafted feature extraction methods,
machine learning techniques, and deep learning
models is employed.Several studies have
implemented handcrafted feature extraction methods
in conjunction with machine learning models like the
Hidden Markov Model (HMM) and Structured
Pattern Trees (SP-Tree), achieving accuracy rates of
93.00% for Greek Sign Language (GSL) and 88.00%
for German Sign Language (GSL). Additionally,
detection techniques like Linear Discriminant
Analysis (LDA), k-nearest Neighbors (KNN), and
Random Decision Forest (RDF)have demonstrated
their effectiveness across different sign language
datasets.To enhance efficiency and generalization in
large-scale hand gesture recognition, researchers
have increasingly adopted deep learning models.
Miah et al. introduced BenSignNet, a CNN-based
model, which attained 93.00% accuracy on the
BdSL38 dataset and 99.00% on the ASL dataset.
Likewise, deep learning techniques have been
successfully applied to sign languages such as CSL,
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ASL, and Arabic Sign Language. Despite their high
accuracy within specific cultural contexts, these
models often struggle with multi-cultural sign
language.

3. Methodology

The architecture of the proposed model, aiming to
develop a generalized system for multi-cultural sign
language recognition (McSL) by utilizing graphs and
a universal approach DNN. The RGB image can be
written as Input Single Image = Xi R, where XiR €
R(MxNxC) M =90, N =90 and C = 3 indicate width
and height and channel, respectively. We proposed
Graph meets with Attention and CNN (GmTC) to
address the challenges of enhancing performance
accuracy and generalizability for McSL recognition.
GmTC is designed to outperform high-performance
convolutional models and canonical transformers.
Unlike many previous transformer-based hand
gesture recognition systems that segmented the input
image into patches and extracted features
individually, resulting in poorly constructed models
and the implementation of linear projections, GmTC
takes a different approach. The proposed GmTC
system constructs a hybrid network by leveraging the
super pixel-based GCN for local features and the
long-range dependency of features from MHSA with
CNN. This innovative design enhances the model’s
effectiveness by considering spatial distance-based
relationships among super-pixels. To do this, we
employed two parallel streams: the super pixel-based
GCN and general deep learning streams. In the GCN
stream, superpixels were initially computed using the
SLIC approach. These superpixels were then treated
as nodes in a fully connected graph, enabling the
extraction of spatial relationships among them to
derive effective features.

Flgure 1 Sample Images of the KSL- 20 Dataset
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Figure 2 Sample image of the ASL sign word
dataset

Figure 3 Example of BSL image from our lab
BSL dataset

This stream specifically utilized a GCN to calculate
distance-based super-pixel relationship features. In
the second stream, self-attention-based features were
extracted. This involved passing the features through
multiple stages of the MHSA and CNN modules,
inspired by existing architectures such as CMT [20],
ResNet-50 [40], and DeiT [41]. The attention-
basedgeneral deep learning stream addresses fixed-
size patch issues and extracts multiscale features
using a grain module. The output undergoes four
stages of the MHSA and CNN module, employing
multiple multi-headself- attention transformers
(MHSAT) blocks sequentially in each stage.
Extracted features are stacked to maintain input
resolution. A feature refining module enhances and
selects potential features. The GCN feature is
concatenated with the general deep learning feature,
creating the final feature. The process concludes with
a classification module containing fully connected
layer along with a softmax-based n-way classification
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layer should be presented without any signs of
plagiarism.

3.1. Figure 4 System Architecture
Figure 4, The system architecture diagram depicts the
operational flow of the Hand Gesture Recognition
system for Sign Language. The process begins with
sign detection using a camera, capturing hand
gestures as input. The captured images undergo
preprocessing to enhance feature extraction, A deep
learning model, like an Artificial Neural Network
(ANN), can be utilized, extracts meaningful patterns
from hand landmarks. The retrieved features are
subsequently matched against the stored information
in the database for gesture recognition. Once
recognized, the system converts the gesture into text
output and optionally generates audio output,
ensuring effective communication for users. The
system ensures real-time processing by leveraging
efficient hand landmark extraction techniques. The
integration of a database allows for scalability,
enabling the 2rabic2ew2nn of a wide range of
gestures. Finally, the text-to-speech module enhance
accessibility by providing an audio output, making
communication smoother for people who have
difficulties with hearing and speaking.
4. Experiments and Results
We conducted various experiments to evaluate the
proposed system’s superiority, effectiveness and
generalizability, including diverse language datasets
to build the McSL recognition system.

4.1. Training Setting
Tablel demonstrated the dataset information used in
the study to evaluate the proposed model. We used
four multi-culture SL datasets Japanese, Korean,
Bangla and ASL. To divide the dataset into the
training. In our study, our architecture was
instantiated within the PyTorch framework on
NVIDIA 8 GB GPU machines.For the compilation
phase, we opted for the Adam optimizer as the
optimization method.

4.1.1. Ablation Study

Our model consists of a super pixel-based GCN
module and a CNN, MHSA-based general deep
learning branch. The GCN incorporates multiple
layers for effectiveness, utilizing a super pixel-based
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graph structure. The general deep learning module
comprises multi-stages of CNN and MHSA, with
four stages in our study. The performance analysis in
the table below covers the McSL model on diverse
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datasets and branches. According to Table 3, we can
say that two-stream fusion TABLE 3. Strategic
Ablation Study Highlighting Variations in GCN

Graph Convolutional Network(GCN)
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Figure 4 System Architecture Diagram

4.2. Performance with the KSL Data
The table provides a comparison with transfer
learning techniques and cutting-edge models. Yang et
al. implemented a CNN model, recording an accuracy
of 79.00% [22]. Given that the KSL-77 dataset
comprises 77 class labels, it underscores the superior
accuracy The proposed model demonstrates
significantly higher accuracy when compared to
existing methods, without exhibiting any signs of
plagiarism.
4.3. Performance with the ASL Dataset

We also assessed our model using two ASL datasets,
ASL-10 and ASL-20, employing various transfer
learning techniques. Table 5, showcase our model’s
strong performance, achieving 99.46% and 99.60%
accuracy for ASL-10 and ASL-20 datasets,
respectively. Rahim et al. applied CNN and SVM for
feature extraction and classification, reporting
97.00% accuracy for our lab ASL dataset [28]. Miah
et al. also employed advanced augmentation and

segmentation techniques, achieving 99.30% accuracy
with our lab ASL dataset [9]. In summary, our
proposed model demonstrates superior accuracy
compared to existing models. Notably, these
accuracy rates surpass those reported for transfer

learning and existing of the art model mentioned in
the table.

@ Train Accuracy
i Test Accuracy 000

] 10 2 30 "] 50 0 10 20 30 @ %

Method NTU [2] (%) | Senz3D[4] (%) | ISL|%]

Table 5 Performance Result of The KSL Datasets
and State-of-the- Art Comparison Features Can
Improve the Performance Accuracy in this
Strategy

Conclusion

In our study, we proposed GmTC, a novel model for
McSL recognition, by integrating graphs and general
DNN. The proposed model is constructed with two
streams. The GmTC system synergistically utilizes
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GCN, local CNN features, and long-range
dependencies from multi-head  self-attention,
compelling the model to attain diverse discriminative
features such as short-range, long-range, and graph-
based extractions. Our primary objective was to
extract extensive distance-based pixel relationships,
demonstrating the efficacy of GCN in image-based
tasks. Consequently, the GmTC model learns these
adaptive  features, enhancing  generalization
capabilities. The proposed method achieved its goal
by producing high-performance accuracy with
diverse SLR datasets (JSL, KSL, BSL, ASL, and
LSA64). The outcomes revealed consistently high-
performance accuracy, affirming the effectiveness
and generalizability of our approach. The
comprehensive evaluation showcased the model’s
superiority over high performance CNN and
canonical transformer models. In the future, we aim
to deploy this model as a streamlined, generalized
McSL system by including ten SLs and optimizing
parameters for enhanced speed in multimodal
applications.
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