

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 10 October 2025

Page No: 3857-3861

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0560

International Research Journal on Advanced Engineering Hub (IRJAEH)

3857

Matrix Applications in NLP: Vector Databases Simplified with FAISS and

GRADIO
Madhavilata Mangipudi1, Uma Iyer2, Bavandla Prahasya Sri3, Sai Sri Aishwarya Venkatesh4
1,2,3,4Department of Humanities and Mathematics, G. Narayanamma Institute of Technology and Science (For

Women), Shaikpet, Hyderabad, Telangana, 500104, India.

Emails: 24251a05v9@gnits.ac.in2, 24251a05w7@gnits.ac.in3, 24251a05v4@gnits.ac.in4

Abstract

Vector Databases (VDBs) are now an essential building block in Natural Language Processing (NLP),

facilitating the efficient storage and retrieval of high-dimensional semantic embeddings. Linear algebra is at

the core of these systems, where matrix operations form the basis of embedding creation, similarity

computation, and indexing. We discuss the mathematical underpinnings of VDBs from a matrix-based

formulation in this paper. We show how similarity measures like cosine similarity

and distance metrics like Euclidean and Mahalanobis distances drive nearest-neighbor retrieval. With FAISS

for indexing and Gradio for prototyping, we introduce a comparative examination of exact vs. approximate

search approaches in NLP retrieval tasks. Our work is a hybrid approach that unites mathematical precision

with practical assessment, closing the gap between abstract matrix derivations and interactive use of VDBs.

Keywords: Vector Database, Linear Algebra, FAISS, Gradio, Natural Language Processing.

1. Introduction
The explosive growth of Natural Language

Processing (NLP) has been fueled by progress in

representation learning, in which raw text is

converted to dense embeddings that preserve

semantic meaning. Embeddings are usually vectors

in a high-dimensional space, and their storage and

retrieval call for appropriate data structures that go

by the name of vector databases (VDBs). A VDB

needs to facilitate fast insertion, indexing, and

querying of embeddings among millions or even

billions of vectors. Fundamentally, a VDB is an

algebraic entity: documents, queries, and features are

embedded as vectors, represented in matrix form:

where is the document count and is an embedding

dimension. This allows linear algebra to be applied

to operations like similarity search, clustering, and

dimensionality reduction. While industrial VDBs

(e.g., Pinecone, Weaviate, Milvus) are large-scale

infrastructure offerings, comprehending the

underlying mathematics is essential for researchers

and practitioners. FAISS (Facebook AI Similarity

Search) provides optimized similarity search

implementations, and Gradio offers a lightweight

API for quick experimentation [1].

2. Mathematical Background of Vector

Databases

2.1. Vector Representation and Matrix

Formulation

A collection of papers, each of which has a -

dimensional embedding, may be expressed as:

https://irjaeh.com/
mailto:24251a05v9@gnits.ac.in2
mailto:24251a05w7@gnits.ac.in3
mailto:24251a05v4@gnits.ac.in4

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 10 October 2025

Page No: 3857-3861

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0560

International Research Journal on Advanced Engineering Hub (IRJAEH)

3858

The matrix provides the base for indexing, querying,

and similarity search for VDBs [2].

2.2. Similarity and Distance Measures

Cosine similarity:

Euclidean Distance:

Mahalanobis Distance:

where is the covariance matrix of the data.

2.3. Dimensionality Reduction

Singular Value Decomposition (SVD):

Low-rank approximation:

Rank approximation:

Principal Component Analysis (PCA): Projects onto

axes of maximum variance which are orthogonal,

commonly used FAISS preprocessing for

Approximate Nearest Neighbor (ANN) search [3].

2.4. Complexity of Nearest Neighbor Search

 Brute-Force Search:

 Approximate Search (IVF, HNSW):

 with minimal loss of accuracy

3. Methods: FAISS and GRADIO Integration

3.1. Embedding Generation

3.1.1. Pseudocode 1: Generate Embeddings

function get_embeddings(texts): model =

SentenceTransformer('all-mpnet-base-v2') return

model.encode(texts)

3.1.2. Embeddings are retrieved with a

sentence transformer

3.2. FAISS Index Construction

3.2.1. Pseudocode 2: Build FAISS Index

function build_faiss_index(embeddings): d =

dimension(embeddings) index = faiss. IndexFlatL2

(d) # exact search using L2 index.add(embeddings)

return index FAISS also provides IVF and HNSW

for approximate search.

3.3. Querying and Similarity Search

3.3.1. Pseudocode 3: Query FAISS Index

function query_index(index, query, k):

embedding_q = get_embeddings([query]) D, I =

index.search(embedding_q, k) return I, D Retrieve

top- nearest neighbors using:

3.4. Gradio Interface

3.4.1. Figure 1. Gradio-based Interactive

Retrieval Interface

interface = gr.Interface(fn = process_text, inputs =

[Textbox("Corpus"), Textbox("Query")], outputs =

[Textbox("Embeddings"), Textbox("Nearest

Neighbor")]) interface.launch()

4. Comparison Between Indexing and Distance Metrics

Table 1 Comparative Experiment between Index Types and Metrics

Type Index Metric Recall@1 Recall@5 Average Query Time (ms) Memory (MB)

Flatness Euclidean 1.00 1.00 12.4 480

Flatness Cosine 0.99 1.00 12.7 482

IVF (100) Euclidean 0.94 0.97 3.2 260

IVF (100) Cosine 0.92 0.96 3.4 262

HNS Euclidean 0.97 0.99 2.8 610

HNS Cosine 0.96 0.98 2.9 615

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 10 October 2025

Page No: 3857-3861

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0560

International Research Journal on Advanced Engineering Hub (IRJAEH)

3859

These involve a controlled comparison between

some of the numerous vector database index

structures and similarity/distance functions at a

general level of the high-dimensional embedding

space. The aim is to provide general information

regarding algorithmic efficiency, correctness, as well

as resource usage for typical scenarios without

executing the results for a particular set [4].

4.1. Purpose of Table 1

4.1.1. Index Type

 Flat: Exact nearest-neighbor query; simple,

correct but scales poorly.

 IVF (Inverted File): Approximate nearest-

neighbor approach by using clustering; faster

but potentially slight less accurate [5].

 HNS (Hierarchical Navigable Small

World): Graph-based approximate search;

fast query with good recall compared to Flat.

4.1.2. Metric

 Euclidean Distance: Estimates the straight-

line distance between high-dimensional

space vectors.

 Cosine Similarity: Measure the angular

similarity by highlighting the direction of the

vectors rather than the magnitude; highly

preferred for NLP applications.

4.1.3. Recall@1 and Recall@5

 Recall@1 measures the proportion of queries

wherein the top returned vector happens to be

the right nearest neighbor.

 Recall@5 does this for the top five results,

demonstrating the strength of the retrieval

approach.

 Average Query Time (ms): The time

required for querying. The less the value, the

quicker the retrieval.

 Memory (MB): The approximate memory

used for storing the index and embeddings;

relevant for large-scale deployment planning.

4.1.4. Interpret

From the yardstick of Table 1, we can predict the

trade-offs between speed, resource usage, and

accuracy depending on how similarity measures and

indexing methods perform by themselves [6].

5. Case Study: Vector Databases for NLP

Retrieval (FAQ Dataset)

 Dataset: 500 FAQs from the educational

sphere

 Query Set: 50 unseen questions

 Metrics: Recall@1, Recall@5, latency

This part analyzes the vector database index

performance for a single real-case scenario: a

semantic FAQ retrieval system. estimates consist of

500 educational FAQs, and the system receives a set

of 50 unseen questions as a means for estimating the

retrievals' efficacy.

Table 2 FAQ Retrieval Performance

Type Index Metric Recall@1 Recall@5 Average Query Time (ms) Memory (MB)

Flatness Euclidean 1.00 1.00 11.8 480

Flatness Cosine 0.99 1.00 12.0 482

IVF (100) Euclidean 0.91 0.96 3.5 250

IVF (100) Cosine 0.90 0.95 3.6 252

HNS Euclidean 0.96 0.98 2.9 610

HNS Cosine 0.95 0.97 3.0 615

5.1. Purpose of Table 2:

Unlike Table 1, this table shows real system behavior

against a real data set, which shows the impact of

similarity measures and index schemes for tasks of

FAQ retrieval. It measures real-world utility (recall)

and speed (query time, memory) for a deployable app

for NLP [7].

5.2. Metrics Described

5.2.1. Recall@1 and Recall@5

 Recall@1 shows the percentage of the

queries for which first-retrieved answer

aligns with the correct FAQ.

 Recall@5 indicates whether the right answer

appears among the first five results yielded,

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 10 October 2025

Page No: 3857-3861

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0560

International Research Journal on Advanced Engineering Hub (IRJAEH)

3860

which offers a more gracious yardstick of

success for retrieval.

5.2.2. Average Query Time (ms)

 This reflects the responsiveness of the system

for a user. The smaller the query time, the

more critical real-time applications such as

interactive FAQ systems or chatbots demand

it [8].

5.2.3. Memory (MB)

 Memory usage for catching the embeddings

and the index; critical for running on

resource-constrained platforms.

5.2.4. Interpret

It also confirms the practicability of the indexing

schemes and the vector databases. Approximation

schemes such as HNS and IVF support quick

retrieval with almost exact recall and thus suitable for

real-time semantic retrieval. Cosine similarity, which

is frequently applied for textual embeddings,

performs equally well as Euclidean distance for this

job, which indicates the importance of the vectors'

orientation over the magnitude for NLP tasks [9].

Observation: Approximate search facilitates near-

instantaneous response with little loss of accuracy.

Conclusion

In this paper, we investigated the mathematical

principles and real-world performance of vector

databases (VDBs) for NLP retrieval tasks, bridging

linear algebra theory such as matrix similarity,

dimensionality reduction, and nearest-neighbor

search with practical implementations using FAISS

and Gradio.

 From our comparative study (Table 1), we

noted that

 Flat indexes ensure perfect recall but suffer

from poor scaling because of increased query

time and memory consumption.

 IVF indexes provide a balance between speed

and precision, offering quicker queries at the

expense of slight recall loss.

 HNSW indexes provide flat-approximate

recall with the quickest query times, at the

expense of greater memory usage through

graph structures.

 Cosine and Euclidean spaces have

comparable performance in high-

dimensional spaces, but cosine similarity

gives more weight to vector direction, which

is best for NLP embeddings.

 From the real-world FAQ retrieval case

study (Table 2), we inferred that

 Vector databases suit real-time semantic

search perfectly, returning pertinent answers

with minimal latency.

 Approximation algorithms such as IVF and

HNSW provide high recall while

significantly limiting query times, showing

their suitability for deployable NLP

applications.

 The addition of a user-friendly interface

through Gradio allows non-technical users to

take advantage of sophisticated retrieval

functionality, closing the gap between

advanced mathematical models and real-

world applications.

 The research overall shows that

 Index selection and distance metric choice

are essential in trading off accuracy,

efficiency, and resource consumption.

 Vector databases are both theoretically sound

and pragmatically useful, being able to drive

production-level NLP applications like FAQ

bots, chatbots, and semantic search.

 Approximate nearest-neighbors search is a

scalable solution that enables deployment on

large-scale corpora without any meaningful

performance degradation.

Future Work

 Scaling experiments to millions of

embeddings to improve understanding of

asymptotic behavior.

 Incorporating learned distance metrics (e.g.,

variants of Mahalanobis) for enhanced

semantic understanding.

 Applying to cross-modal retrieval (image–

text, speech–text) based on identical matrix-

based foundations.

 Investigating memory-efficient compression

methods such as product quantization

without degradation of recall.

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 10 October 2025

Page No: 3857-3861

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0560

International Research Journal on Advanced Engineering Hub (IRJAEH)

3861

 Incorporating user-centered evaluation

measures such as perceived latency and

satisfaction to measure real-world usability.

Overall, vector databases are more than just

engineering solutions—they have strong connections

to linear algebra, and their deliberate design

facilitates highly efficient and accurate retrieval of

high-dimensional semantic embeddings, closing the

gap between theory and practice for deployment in

NLP.

References

[1]. Brahmadevara, S. (2023). Language

Competence Through Simulation Based

Learning: A Perspective. AIP Conference

Proceedings, 2794(1), 020050.

[2]. Vijayarangam, S., Vasundhara, S., Behera,

N. R., Chandre, S., & Rajagopal, R. (2023).

Machine Learning with Monarch Butterfly

Optimization for Prediction of Emergency

Patient Admission Status. In 2023 5th

International Conference on Electrical,

Computer and Communication Technologies

(ICECCT).

[3]. Sunitha, K. V. N., & Sunitha Devi, P. (2023).

OMSST Approach for Unit Selection from

Speech Corpus for Telugu TTS. Lecture

Notes in Networks and Systems, 493, 321–

329.

[4]. Khurana, D., Koli, A., Khattar, K., & Singh,

S. (2023). Natural Language Processing:

State of Art, Current Trends and Challenges.

Springer Nature, 82, 3713–3744.

[5]. Chowdhury, G. (2003). Natural Language

Processing. Annual Review of Information

Science and Technology, 37, 51–89.

[6]. Raj, V. S., Subalalitha, C. N. K., Sambath, L.,

Glavin, F., & Chakravarthi, B. R. (2024).

ConBERT-RL: A Policy-Driven Deep

Reinforcement Learning Based Approach for

Detecting Homophobia and Transphobia in

Low-Resource Languages. Elsevier, pp. 1–

12.

[7]. Birari, H. P., Lohar, G. V., & Joshi, S. L.

(2023). Advancements in Machine Vision for

Automated Inspection of Assembly Parts: A

Comprehensive Review. International

Research Journal on Advanced Science Hub,

5(10), 365–371.

https://doi.org/10.47392/IRJASH.2023.065

[8]. Rajan, P., Devi, A. B., Dusthackeer, A., &

Iyer, P. (2023). A Green perspective on the

ability of nanomedicine to inhibit

tuberculosis and lung cancer. International

Research Journal on Advanced Science Hub,

5(11), 389–396.

https://doi.org/10.47392/IRJASH.2023.071

[9]. Keerthivasan, S. P., & Saranya, N. (2023).

Acute Leukemia Detection using Deep

Learning Techniques. International Research

Journal on Advanced Science Hub, 5(10),

372–381.

https://irjaeh.com/

