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Abstract 

Vector Databases (VDBs) are now an essential building block in Natural Language Processing (NLP), 

facilitating the efficient storage and retrieval of high-dimensional semantic embeddings. Linear algebra is at 

the core of these systems, where matrix operations form the basis of embedding creation, similarity 

computation, and indexing. We discuss the mathematical underpinnings of VDBs from a matrix-based 

formulation in this paper. We show how similarity measures like cosine similarity 

 

 
 

and distance metrics like Euclidean and Mahalanobis distances drive nearest-neighbor retrieval. With FAISS 

for indexing and Gradio for prototyping, we introduce a comparative examination of exact vs. approximate 

search approaches in NLP retrieval tasks. Our work is a hybrid approach that unites mathematical precision 

with practical assessment, closing the gap between abstract matrix derivations and interactive use of VDBs. 
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1. Introduction 
The explosive growth of Natural Language 

Processing (NLP) has been fueled by progress in 

representation learning, in which raw text is 

converted to dense embeddings that preserve 

semantic meaning. Embeddings are usually vectors 

in a high-dimensional space, and their storage and 

retrieval call for appropriate data structures that go 

by the name of vector databases (VDBs). A VDB 

needs to facilitate fast insertion, indexing, and 

querying of embeddings among millions or even 

billions of vectors. Fundamentally, a VDB is an 

algebraic entity: documents, queries, and features are 

embedded as vectors, represented in matrix form: 

 

 
where   is the document count and   is an embedding 

dimension. This allows linear algebra to be applied 

to operations like similarity search, clustering, and 

dimensionality reduction. While industrial VDBs 

(e.g., Pinecone, Weaviate, Milvus) are large-scale 

infrastructure offerings, comprehending the 

underlying mathematics is essential for researchers 

and practitioners. FAISS (Facebook AI Similarity 

Search) provides optimized similarity search 

implementations, and Gradio offers a lightweight 

API for quick experimentation [1]. 

2. Mathematical Background of Vector 

Databases 

2.1. Vector Representation and Matrix 

Formulation 

A collection of   papers, each of which has a -

dimensional embedding, may be expressed as: 

 

https://irjaeh.com/
mailto:24251a05v9@gnits.ac.in2
mailto:24251a05w7@gnits.ac.in3
mailto:24251a05v4@gnits.ac.in4


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 10 October 2025 

Page No: 3857-3861 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0560 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

3858 

 

The matrix provides the base for indexing, querying, 

and similarity search for VDBs [2]. 

2.2. Similarity and Distance Measures 

Cosine similarity: 

 

 
 

Euclidean Distance: 

 

 
 

Mahalanobis Distance: 

 

 
 

where   is the covariance matrix of the data. 

2.3. Dimensionality Reduction 

Singular Value Decomposition (SVD): 

 

 
 

Low-rank approximation: 

 

 
Rank approximation:  

Principal Component Analysis (PCA): Projects onto 

axes of maximum variance which are orthogonal, 

commonly used FAISS preprocessing for 

Approximate Nearest Neighbor (ANN) search [3]. 

2.4. Complexity of Nearest Neighbor Search 

 Brute-Force Search:   

 Approximate Search (IVF, HNSW):  

  with minimal loss of accuracy 

3. Methods: FAISS and GRADIO Integration 

3.1. Embedding Generation 

3.1.1. Pseudocode 1: Generate Embeddings 

function get_embeddings(texts): model = 

SentenceTransformer('all-mpnet-base-v2') return 

model.encode(texts) 

3.1.2. Embeddings are retrieved with a 

sentence transformer 

 

 
 

3.2. FAISS Index Construction 

3.2.1. Pseudocode 2: Build FAISS Index 

function build_faiss_index(embeddings): d = 

dimension(embeddings) index = faiss. IndexFlatL2 

(d)  # exact search using L2 index.add(embeddings) 

return index FAISS also provides IVF and HNSW 

for approximate search. 

3.3. Querying and Similarity Search 

3.3.1. Pseudocode 3: Query FAISS Index 

function query_index(index, query, k): 

embedding_q = get_embeddings([query]) D, I = 

index.search(embedding_q, k) return I, D Retrieve 

top- nearest neighbors using: 

3.4. Gradio Interface 

3.4.1. Figure 1. Gradio-based Interactive 

Retrieval Interface 

interface = gr.Interface( fn = process_text, inputs = 

[Textbox("Corpus"), Textbox("Query")], outputs = 

[Textbox("Embeddings"), Textbox("Nearest 

Neighbor")]) interface.launch() 

 

4. Comparison Between Indexing and Distance Metrics 

 

Table 1 Comparative Experiment between Index Types and Metrics 

Type Index Metric Recall@1 Recall@5 Average Query Time (ms) Memory (MB) 

Flatness Euclidean 1.00 1.00 12.4 480 

Flatness Cosine 0.99 1.00 12.7 482 

IVF (100) Euclidean 0.94 0.97 3.2 260 

IVF (100) Cosine 0.92 0.96 3.4 262 

HNS Euclidean 0.97 0.99 2.8 610 

HNS Cosine 0.96 0.98 2.9 615 

https://irjaeh.com/
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These involve a controlled comparison between 

some of the numerous vector database index 

structures and similarity/distance functions at a 

general level of the high-dimensional embedding 

space. The aim is to provide general information 

regarding algorithmic efficiency, correctness, as well 

as resource usage for typical scenarios without 

executing the results for a particular set [4]. 

4.1. Purpose of Table 1 

4.1.1. Index Type 

 Flat: Exact nearest-neighbor query; simple, 

correct but scales poorly. 

 IVF (Inverted File): Approximate nearest-

neighbor approach by using clustering; faster 

but potentially slight less accurate [5]. 

 HNS (Hierarchical Navigable Small 

World): Graph-based approximate search; 

fast query with good recall compared to Flat. 

4.1.2. Metric 

 Euclidean Distance: Estimates the straight-

line distance between high-dimensional 

space vectors. 

 Cosine Similarity: Measure the angular 

similarity by highlighting the direction of the 

vectors rather than the magnitude; highly 

preferred for NLP applications. 

4.1.3. Recall@1 and Recall@5 

 Recall@1 measures the proportion of queries 

wherein the top returned vector happens to be 

the right nearest neighbor. 

 Recall@5 does this for the top five results, 

demonstrating the strength of the retrieval 

approach. 

 

 Average Query Time (ms): The time 

required for querying. The less the value, the 

quicker the retrieval. 

 Memory (MB): The approximate memory 

used for storing the index and embeddings; 

relevant for large-scale deployment planning. 

4.1.4. Interpret 

From the yardstick of Table 1, we can predict the 

trade-offs between speed, resource usage, and 

accuracy depending on how similarity measures and 

indexing methods perform by themselves [6]. 

5. Case Study: Vector Databases for NLP 

Retrieval (FAQ Dataset) 

 Dataset: 500 FAQs from the educational 

sphere 

 Query Set: 50 unseen questions 

 Metrics: Recall@1, Recall@5, latency 

This part analyzes the vector database index 

performance for a single real-case scenario: a 

semantic FAQ retrieval system. estimates consist of 

500 educational FAQs, and the system receives a set 

of 50 unseen questions as a means for estimating the 

retrievals' efficacy. 

 

Table 2 FAQ Retrieval Performance 

Type Index Metric Recall@1 Recall@5 Average Query Time (ms) Memory (MB) 

Flatness Euclidean 1.00 1.00 11.8 480 

Flatness Cosine 0.99 1.00 12.0 482 

IVF (100) Euclidean 0.91 0.96 3.5 250 

IVF (100) Cosine 0.90 0.95 3.6 252 

HNS Euclidean 0.96 0.98 2.9 610 

HNS Cosine 0.95 0.97 3.0 615 

5.1. Purpose of Table 2: 

Unlike Table 1, this table shows real system behavior 

against a real data set, which shows the impact of 

similarity measures and index schemes for tasks of 

FAQ retrieval. It measures real-world utility (recall) 

and speed (query time, memory) for a deployable app 

for NLP [7]. 

5.2. Metrics Described 

5.2.1. Recall@1 and Recall@5 

 Recall@1 shows the percentage of the 

queries for which first-retrieved answer 

aligns with the correct FAQ. 

 Recall@5 indicates whether the right answer 

appears among the first five results yielded, 

https://irjaeh.com/
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which offers a more gracious yardstick of 

success for retrieval. 

5.2.2. Average Query Time (ms)  

 This reflects the responsiveness of the system 

for a user. The smaller the query time, the 

more critical real-time applications such as 

interactive FAQ systems or chatbots demand 

it [8]. 

5.2.3. Memory (MB) 

 Memory usage for catching the embeddings 

and the index; critical for running on 

resource-constrained platforms. 

 

5.2.4. Interpret 

It also confirms the practicability of the indexing 

schemes and the vector databases. Approximation 

schemes such as HNS and IVF support quick 

retrieval with almost exact recall and thus suitable for 

real-time semantic retrieval. Cosine similarity, which 

is frequently applied for textual embeddings, 

performs equally well as Euclidean distance for this 

job, which indicates the importance of the vectors' 

orientation over the magnitude for NLP tasks [9]. 

Observation: Approximate search facilitates near-

instantaneous response with little loss of accuracy. 

Conclusion 

In this paper, we investigated the mathematical 

principles and real-world performance of vector 

databases (VDBs) for NLP retrieval tasks, bridging 

linear algebra theory such as matrix similarity, 

dimensionality reduction, and nearest-neighbor 

search with practical implementations using FAISS 

and Gradio. 

 From our comparative study (Table 1), we 

noted that 

 Flat indexes ensure perfect recall but suffer 

from poor scaling because of increased query 

time and memory consumption. 

 IVF indexes provide a balance between speed 

and precision, offering quicker queries at the 

expense of slight recall loss. 

 HNSW indexes provide flat-approximate 

recall with the quickest query times, at the 

expense of greater memory usage through 

graph structures. 

 Cosine and Euclidean spaces have 

comparable performance in high-

dimensional spaces, but cosine similarity 

gives more weight to vector direction, which 

is best for NLP embeddings. 

 From the real-world FAQ retrieval case 

study (Table 2), we inferred that 

 Vector databases suit real-time semantic 

search perfectly, returning pertinent answers 

with minimal latency. 

 Approximation algorithms such as IVF and 

HNSW provide high recall while 

significantly limiting query times, showing 

their suitability for deployable NLP 

applications. 

 The addition of a user-friendly interface 

through Gradio allows non-technical users to 

take advantage of sophisticated retrieval 

functionality, closing the gap between 

advanced mathematical models and real-

world applications. 

 The research overall shows that 

 Index selection and distance metric choice 

are essential in trading off accuracy, 

efficiency, and resource consumption. 

 Vector databases are both theoretically sound 

and pragmatically useful, being able to drive 

production-level NLP applications like FAQ 

bots, chatbots, and semantic search. 

 Approximate nearest-neighbors search is a 

scalable solution that enables deployment on 

large-scale corpora without any meaningful 

performance degradation. 

Future Work 

 Scaling experiments to millions of 

embeddings to improve understanding of 

asymptotic behavior. 

 Incorporating learned distance metrics (e.g., 

variants of Mahalanobis) for enhanced 

semantic understanding. 

 Applying to cross-modal retrieval (image–

text, speech–text) based on identical matrix-

based foundations. 

 Investigating memory-efficient compression 

methods such as product quantization 

without degradation of recall. 
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 Incorporating user-centered evaluation 

measures such as perceived latency and 

satisfaction to measure real-world usability. 

Overall, vector databases are more than just 

engineering solutions—they have strong connections 

to linear algebra, and their deliberate design 

facilitates highly efficient and accurate retrieval of 

high-dimensional semantic embeddings, closing the 

gap between theory and practice for deployment in 

NLP. 
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