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Abstract 

This study investigates the application of reinforcement learning (RL) techniques for simulating and managing 

semi-active suspension systems within a quarter-car model framework. Conventional controllers, such as PID 

and skyhook, typically depend on fixed parameters and simplified system assumptions, which can restrict their 

effectiveness when faced with nonlinear and variable road conditions. RL, on the other hand, provides a 

flexible, model-free control methodology that learns optimal strategies through continuous interaction with 

the vehicle’s dynamic environment. In this work, three RL algorithms - Deep Q-Network (DQN), Proximal 

Policy Optimization (PPO), and Deep Deterministic Policy Gradient (DDPG) are utilized to reduce body 

acceleration and tire displacement, thereby enhancing both ride quality and handling performance. 

Simulation studies conducted on a range of road disturbances, including sinusoidal, step, and random profiles, 

reveal that RL-driven controllers outperform traditional approaches in terms of adaptability, robustness, and 

smooth control actions. The results highlight RL’s capability to deliver efficient suspension control without 

requiring explicit system models or extensive manual tuning, demonstrating strong generalization to 

previously unseen conditions. These benefits underscore the potential of reinforcement learning as a powerful 

tool for developing intelligent, autonomous suspension systems in modern vehicles. 

Keywords: Adaptive control, Deep Q-network, Proximal policy optimization, Quarter-car model, 

Reinforcement learning. 

 

1. Introduction 
Advancements in automotive systems demand 

improved ride comfort, vehicle stability, and 

adaptability to diverse road profiles. Suspension 

systems directly influence these factors by isolating 

passengers from road irregularities while 

maintaining tire contact with the ground [1], [2]. 

Conventional passive suspension systems are simple 

and reliable but cannot adapt to changing conditions. 

To overcome this limitation, active and semi-active 

suspensions were introduced, enabling real-time 

damping adjustments [3]. Machine learning (ML), 

and more specifically reinforcement learning (RL), 

has emerged as a powerful approach for such control 

problems. Unlike classical model-based methods, 

RL learns policies through interaction with the 

environment, making it well-suited for systems with 

nonlinear and uncertain dynamics such as suspension 

control [4], [5]. Recent deep RL advances enable 

efficient continuous control, offering strong 

adaptability to unseen conditions [10]– [14]. 

1.1. Semi-Active Suspension Systems 

Suspension systems are broadly classified as follows 

[2], [3]: 

 Passive suspensions: use fixed springs and 

dampers, low-cost but inflexible. 

 Active suspensions: employ actuators to 

apply external forces, achieving optimal 

comfort but with high complexity and energy 

demands. 

 Semi-active suspensions: utilize variable 

dampers (e.g., magnetorheological) to 
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modulate damping in real time. Semi-active 

designs balance performance and efficiency, 

making them attractive for modern vehicles. 

The main objective is to regulate damping for 

improved ride comfort, handling, and 

stability. RL enables autonomous 

optimization of damping without requiring 

explicit models or manual parameter tuning 

[4], [10]. 

2. Related Work 

Classical controllers such as PID and skyhook 

remain popular for suspension systems [3]. While 

computationally efficient, they are limited in 

nonlinear and time-varying scenarios. Alternatives 

like sliding mode and fuzzy control provide more 

flexibility but require detailed modelling and are 

prone to stability issues. RL has achieved significant 

success in complex control domains. DQN 

demonstrated human-level decision-making [5], 

while PPO [6] and DDPG [7] advanced continuous 

control. In the automotive sector, RL has been 

applied to active suspension [8] and adaptive cruise 

control [9]. More recently, researchers have focused  

on semi-active suspensions, confirming RL’s 

advantages in robustness and comfort improvements 

[10]– [14]. 

3. System Model and Problem Formulation 

3.1. Quarter-Car Model 

The quarter-car model represents vertical vehicle 

dynamics with two degrees of freedom: sprung mass 

(mₛ) and unsprung mass (mᵤ). Parameters include 

suspension stiffness (kₛ), tire stiffness (kₜ), and 

variable damping coefficient (c). 

3.2. Governing Equations 
𝑚𝑠𝑧̈𝑠 = −𝑘𝑠(𝑧𝑠 − 𝑧𝑢) − 𝑐(𝑡)(𝑧̇𝑠 − 𝑧̇𝑢)

𝑚𝑢𝑧̈𝑢 = 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) + 𝑐(𝑡)(𝑧̇𝑠 − 𝑧̇𝑢) − 𝑘𝑡(𝑧𝑢 − 𝑧𝑟).
 

3.3. Control Objective 

The damping coefficient is constrained as: 

𝒄𝐦𝐢𝐧 ≤ 𝒄(𝒕) ≤ 𝒄𝐦𝐚𝐱 

The damping force is: 

𝑭𝒅(𝒕) = 𝒄(𝒕)(𝒛̇𝒔 − 𝒛̇𝒖) 
The cost function combines ride comfort and 

handling: 

𝑱 = ∫ [𝜶 𝒛̈𝒔(𝒕)
𝟐 + 𝜷 (𝒛𝒖(𝒕) − 𝒛𝒓(𝒕))

𝟐
]

𝑻

𝟎

𝒅𝒕, 

where α and β are weighting coefficients. 

4. Simulation Environment 

 State space: [zₛ, ẋₛ, zᵤ, ẋᵤ, zᵣ]. 

 Action space: damping coefficient bounded 

by [cmin, cmax]. 

 Reward function: negative weighted sum of 

body acceleration and tire deflection. 

 Road profiles: sinusoidal, step, and random 

disturbances. 

The environment is built in Python with numerical 

solvers (1–10 ms timestep). 

5. Reinforcement Learning Algorithms 

 DQN: Q-learning with neural network 

approximation for discretized actions [5]. 

 PPO: policy gradient with clipped objectives 

for stability and continuous actions [6]. 

 DDPG: actor-critic with deterministic 

policies for sample-efficient continuous 

control [7]. 

6. Simulation Setup 

6.1. Vehicle Parameters 

 

Table 1 Quarter-Car Model Parameters 

Parameter Symbol Value Unit 

Sprung mass mₛ 290 kg 

Unsprung mass mᵤ 59 kg 

Suspension 

stiffness 
kₛ 16,000 N/m 

Tire stiffness kₜ 190,000 N/m 

Damping range 
cmin–

cmax 

100–

1000 
Ns/m 

 

6.2. Road Inputs 

 Sinusoidal with varying frequency. 

 Step inputs (bumps). 

 Random stochastic disturbances [2]. 

6.3. RL Training Parameters 

 

Table 2 Reinforcement Learning Training 

Parameters 

Parameter DQN PPO DDPG 

Learning rate 0.001 0.0003 0.001 

Discount factor (γ) 0.99 0.99 0.99 

Batch size 64 64 64 

Replay buffer 100,000 – 100,000 

Training episodes 1000 1000 1000 
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7. Results and Discussion 

7.1. Performance Metrics 

 

Table 3 Performance Comparison of Suspension 

Controllers 

Controller 

 

RMS 

Acceleration 

(m/s²) 

RMS Tire 

Deflection 

(m) 

Energy 

Proxy 

(J) 

Passive 1.85 0.010 – 

PID 1.30 0.007 15.2 

Skyhook 1.12 0.006 13.8 

DQN 1.05 0.0055 12.5 

PPO 0.95 0.0048 11.2 

DDPG 0.98 0.0050 11.7 

 

7.2. Analysis 

The RL-based controllers achieve lower acceleration 

and tire deflection compared to classical controllers. 

PPO demonstrates the best balance, while DDPG 

yields smoother damping profiles. Unlike DQN, 

which discretizes damping actions, PPO and DDPG 

exploit continuous spaces, improving efficiency. 

Under random road inputs, RL controllers preserve 

performance, confirming robustness and 

generalization. 

Conclusion 

This study presented reinforcement learning-based 

semi-active suspension control using a quarter-car 

model. PPO and DDPG demonstrated superior 

performance relative to classical controllers, 

highlighting RL’s ability to handle nonlinear and 

uncertain conditions. The model-free and adaptive 

nature of RL makes it a promising candidate for 

future suspension technologies. Future work includes 

hardware-in-the-loop validation and extension to 

full-vehicle dynamics. 
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