

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3819

Intrusion Detection System in CAN-BUS Vehicle Networks Using Machine

Learning
Deekshith G. R.1, S. R. Sheetal2, Divya G. S.3, Darshan B. M.4, Aryan Anil5, Balakrishna V6
1,2,3,4,5,6Department of Computer Science, AMC Engineering College, Bengaluru, India

Email: deekshith.gr123@gmail.com1, srsheeta@gmail.com2, Divya.siddaraj@gmail.com3,

mahadeva3008@gmail.com4, aryananil00007@gmail.com5, balureddy2004@gmail.com6

Abstract

As vehicles become more connected and software-rich, securing communications inside vehicles is

increasingly important. The Controller Area Network (CAN-BUS) is simple and efficient, which is why it

remains the dominant vehicle network. That simplicity comes at a cost: the protocol lacks built-in

authentication or encryption, leaving it exposed to injection, flooding and impersonation attacks. Here we

describe a practical, real-time Intrusion Detection System (IDS) for CAN-BUS that combines supervised

machine learning with features useful for deployment. The core detector is a Random Forest trained on the

OCS-Lab dataset; it distinguishes benign traffic from DoS, fuzzy and impersonation attacks and achieves a

validation accuracy of 85.37%. Importantly, the IDS is more than a model: it includes a retraining dashboard,

a timeline for investigation, live packet classification and automated email alerts so operators can react

quickly and with context.

Keywords: Automotive cybersecurity; CAN-BUS; Intrusion detection system; Machine learning; Real-time

monitoring.

1. Introduction

Modern vehicles host many electronic control units

(ECUs) that coordinate critical functions such as

engine control, brake, body electronics and driver

assistance. CAN-BUS is the standard in-vehicle

backbone because it provides deterministic

arbitration and a degree of fault tolerance. That same

simplicity, however, leaves out cryptographic

protections. An attacker with local access — through

OBD-II, a compromised telematics module, or an

aftermarket device — can inject frames, flood the

bus, or impersonate ECUs; any of these actions can

degrade availability or, worse, safety.

• Motivation: Effective protections must run

in real time on constrained hardware and give

operators concise, actionable signals so they

can triage incidents quickly.

• Contributions: This work presents (i) a

modular ML-based IDS with operator-facing

dashboards and automated alerts. (ii) an end-

to-end capture-to-alert pipeline; (iii) an

empirical evaluation using OCS-Lab data;

and (iv) deployment guidance covering

latency, observability and maintenance.

2. Background on CAN-BUS

2.1. Frame Structure and Arbitration

A standard CAN frame includes an identifier (11- or

29-bit), control fields (including DLC), up to eight

data bytes, CRC, ACK and EOF. Arbitration uses

wired-AND: nodes with lower identifier values win

access to the bus. This scheme supports real-time

priorities but can be abused — an attacker who

repeatedly sends a high-priority identifier can

effectively deny service.

2.2. Error Handling and Fault Confinement

CAN controllers track transmits and receives error

counters; exceeding thresholds causes nodes to enter

error-passive or bus-off modes and stop transmitting.

Attackers can deliberately cause errors using

malformed frames. Because low-level counters are

not always exposed to applications, our IDS

emphasizes timing and distributional statistics that a

passive capture can reliably observe.

3. Related Work

The literature includes interval and frequency

detectors [1], temporal deep models [2], and broader

system-level analyses [4]. Recent surveys and

https://irjaeh.com/
mailto:deekshith.gr123@gmail.com1
mailto:srsheeta@gmail.com2
mailto:Divya.siddaraj@gmail.com3
mailto:mahadeva3008@gmail.com4
mailto:aryananil00007@gmail.com5
mailto:balureddy2004@gmail.com6

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3820

comparative analyses summarize AI- driven in-

vehicle IDS approaches and provide a taxonomy of

features and learning methods; this help place our

work in the context of practical, deployment-aware

IDS research. Recent empirical studies show

continuing improvements in sequence and

distributional approaches for CAN IDS. [6]– [8]

4. Problem Formulation

We frame intrusion detection as a multi-class

classification problem with labels for benign, DoS,

fuzzy, and impersonation attacks. Let D = {(𝑥𝑖, 𝑦𝑖)}

𝑁 be chronological, windowed samples with labels

𝑦𝑖 ∈ {0, 1, 2, 3}. Each feature vector 𝑥𝑖 ∈ R𝑑

contains message-level, temporal and distributional

statistics. The learning objective is to find 𝑓𝜃: R𝑑 →

{0, 1, 2, 3} that maximizes macro-F1 under latency

constraints compatible with gateway deployment.

We also incorporate calibrated scores so alerts can be

tired by operator severity.

5. System Design and Methodology

Figure 1 shows the layered pipeline: capture →

preprocess → classify → visualize/log → alert. A

key engineering choice is to isolate inference from

non-critical subsystems (storage, email), so

temporary service outages do not block detection.

5.1. Dataset

We use the OCS-Lab CAN intrusion dataset [3],

which includes benign traces and labeled attacks

(DoS, fuzzy, impersonation). Each record contains a

timestamp, identifier, DLC and up to eight payload

bytes. Attack classes primarily differ in timing and

payload variability.

5.2. Threat Model and Assumptions

The attacker has local access to the CAN segment

(can inject, replay or flood frames). The IDS operates

as a read-only gateway or passive tap. We assume

legacy CAN without cryptographic protection.

5.3. Feature Engineering and Windowing

Representative features appear in Table 1: message-

level encodings (ID hashing/one-hot, DLC, payload

histograms), per-ID timing statistics, and short-

window aggregates (unique ID ratio, top-k
frequency share). Continuous features are Minmax

scaled. Windows of n = 50 frames with 50% overlap

provide a practical compromise between

responsiveness and stability.

Table 1 Representative Feature Set (abbrev.)

Feature Type

ID one-hot / hashed

buckets
Categorical

DLC Numeric

Payload byte histogram

(coarse bins)
Numeric vector

Inter-arrival time (per ID)
Temporal

numeric

Unique-ID ratio (window) Temporal stat

Top-k ID frequency share Temporal stat

5.4. Preprocessing and Split

We filter malformed frames, compute per-ID deltas,

and assemble sliding windows in chronological

order. To avoid leakage, we split chronologically:

70% train, 15% validation, 15% test.

5.5. Model Selection and Hyperparameters

We evaluated Random Forest (RF), SVM (RBF) and

Gradient Boosting. RF provided the best trade-off

between accuracy and inference latency on gateway-

class hardware. Typical RF hyperparameters used:

300 trees, max depth 18, min samples split 4, class

weight=balanced, max_features=sqrt.

5.6. Training and Inference Workflow

Algorithm 1 summarizes training and inference:

feature ex- traction, chronological splits, class-

weighted training, artifact persistence (model, scaler,

feature map), and batched inference (128 windows)

with post-processing and thresholding.

Table 2 Algorithm 1 Training and Inference

Workflow

Algorithm 1 Training and Inference

Workflow

1: Load frames; compute features (Table 1);

build windows

2: Chronological split: 70/15/15 train/Val/test

3: Train RF with class weighting; tune

trees/depth on validation

4: Persist best model via job lib; export

scaler/feature map

5: Inference: vectorize → batch predict (128)

→ post-process

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3821

Figure 1 System architecture of the proposed

CAN-BUS IDS

Interpretation (Figure 1): Capture and

preprocessing are separated from inference, so

packet bursts do not stall classification. A

lightweight logging layer mirrors decisions to

storage and the dashboard; alerting is handled

asynchronously via SMTP with retries.

Figure 2 Workflow pipeline of the proposed

CAN-BUS IDS

Interpretation (Figure 2): Packets are windowed

(50 frames, 50% overlap), scaled and fed to the RF

model in batches of 128. Post-processing applies per-

class thresholds and calibration to produce alert

candidates matched to operator severity levels.

5.7. Service Topology (NEW)

Figure 3 shows the runtime topology: a CAN

capture agent forwards frames to a preprocessor; the

inference service classifies batches; outputs flow to a

dashboard API and a SQLite store; the alerting

service consumes high-confidence events and sends

email via SMTP with retries and exponential

backoff. These separations limit blast radius and let

components

Figure 3 API/Service Topology: Capture,

Preprocessing, Inference, Storage, Dashboard,

And Alerting

6. Implementation

6.1. Frontend (Operator UX)

A React-based UI provides four primary views:

Training (dataset selection, progress, validation

curve), Detection (streaming table with ID,

timestamp and predicted class), Timeline

(aggregated counts and contextual slices), and Set-

tings/Alerts (thresholds, SMTP config, alert history).

Each alert links to a compact snapshot of the feature

vector to accelerate triage.

6.2. Backend Services and API

Table 3 REST API Endpoints (Summary)

Endpoint Method
Purpose (Req. →

Resp.)

/ Classify POST
Batch features →

labels & scores

/ Retrain POST

Dataset

name/config →

status, val acc

/ Alerts

GET/POST

List or

insert alert

records

/ Alerts

/ Metrics GET

Model summary,

confusion, ROC

refs

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3822

A stateless Flask REST API exposes inference and

dashboard endpoints. Models are hot swapped after

validation. Table 2 lists the core endpoints.

6.3. Database and Email Alerting

SQLite stores alerts, retraining runs and metrics.

Email dispatch uses TLS with exponential backoff

and a dead-letter queue, so transient mail failures do

not block inference.

7. Results and Evaluation

We evaluate classification quality, explainability,

robustness and the operator-facing outputs.

7.1. Evaluation Protocol

We report accuracy, precision, recall, F1 and ROC.

For a class c we compute

Precision𝑐 = 𝑇𝑃𝑐

Recall𝑐 = 𝑇𝑃𝑐
F1 is the harmonic meaning of precision and recall.

Confidence intervals (95%) use normal

approximations and McNemar tests assess paired-

model differences.

7.2. Data Characteristics

Table 3 summarizes the training plus validation

counts. The heavy benign skew matches realistic

traffic and motivates class-weighted training.

Table 4 Approximate Class Distribution

(Train+Val)

Class Count (frames

Benign 1,200,000

DoS 220,000

Fuzzy 180,000

Impersonation 110,000

7.3. Accuracy and Curves

Random Forest achieves 85.37% validation

accuracy. The confusion matrix (Figure 4) highlights

strong recall on DoS and fuzzy classes;

impersonation is harder due to overlap with periodic

benign signals. ROC curves (Figure 5) guided

threshold selection for different alerting tiers.

Figure 4 Confusion matrix of IDS classification

results

7.4. Per-class Breakdown and Feature

Importance

Table 4 reports per-class precision, recall and F1 on

the validation split. Each alert also surfaces top

contributing

Figure 5 ROC Curves for Attack Class Detection

features to help operators understand why the model

flagged the event.

Table 5 Per-Class Performance on Validation

Split

Class Precision Recall F1

Benign 0.87 0.84 0.85

DoS 0.90 0.88 0.89

Fuzzy 0.86 0.83 0.84

Impersonation 0.81 0.79 0.80

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3823

7.5. Thresholding and Calibration

We use Platt scaling for score calibration and choose

thresholds, so paging-level alerts keep FPR near or

below 2% on validation. Example operating points

are shown in Table 5 and 6.

Table 6 Threshold vs Operating Point

(Validation)

Class Thr. TPR FPR

DoS 0.58 0.91 0.019

Fuzzy 0.55 0.89 0.021

Impersonation 0.61 0.82 0.031

7.6. Ablations: Model and Window Size

We compare different learners and window sizes

(Tables 7 & 8). A window of n = 50 frames gives a

practical balance between macro-F1 and latency for

gateway deployments.

7.7. Robustness to Timing Jitter and Noise

We injected Gaussian jitters at inter-arrival times and

added noise to payload histograms. Performance

degrades gracefully

Table 7 Ablation: Accuracy vs. Inference Time

Model Val. Acc.
Inference

(ms/128)

SVM (RBF) 82.4% 34.7

Gradient

Boosting
83.1% 21.5

Random

Forest
85.37% 9.6

Table 8 Ablation: Window Size vs. F1 and

Latency

Window
Macro-

F1

Impers.

F1
Latency

𝑛 = 25 0.83 0.77 Low

𝑛 = 50 0.85 0.80 Med

𝑛 = 100 0.85 0.81 High

(Table 9), demonstrating the robustness of temporal

and distributional features.

Table 9 Robustness Under Perturbations

(Validation Macro-F1)

Perturbation Level Macro-F1

None – 0.85

Timing jitter 𝜎 = 0.2 ms 0.84

Timing jitter 𝜎 = 0.5 ms 0.82

Payload noise
small (±1

bin)
0.84

Payload noise
mod. (±3

bins)
0.83

7.8. Operational Outputs (Dashboards)

Figures 6–9 show the operator-facing views. High-

confidence alerts include a short rationale and a

compact snapshot to speed investigation.

Figure 6 Dashboard View of Intrusion Alerts

Interpretation (Figure 6): High-confidence events

(solid markers) trigger SMTP alerts while advisory

anomalies annotate the timeline.

Figure 7 Timeline visualization of detected

intrusions

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3824

Interpretation (Figure 7): Burst patterns typically

indicate DoS, whereas intermittent spikes often map

to fuzzy injections or benign maintenance.

Figure 8 Classification Results of CAN Packets

Interpretation (Figure 8): Per-ID listings and

predicted classes help with fast correlation against

ECU logs.

Figure 9 Email alert notifying the administrator

Interpretation (Figure 9): Emails embed an alert

ID, the relevant timestamp window, and the primary

contributing features

7.9. Pipeline Data Flow (NEW)

Table 10 lists processing stages, inputs, outputs and

side effects for auditing and accountability.

Table 10 End-To-End Data Flow: Stages, Inputs, Outputs, Side Effects

Stage Inputs Outputs Side Effect

Capture
Raw CAN frames

(ts,

Frame stream ID,

DLC, payload)
-

Preprocess Frame stream
Feature vectors,

win-
Preprocess

Inference Feature windows Labels, scores Metrics

Post-process Labels, scores Alert candidates Threshold logs

Storage Alerts/events Indexed records SQLite write

Dashboard API responses UI tables/graphs Web logs

Email Alert events SMTP messages Retry queue

7.10. Resource Utilization and Latency

Tables 10 and 11 summarize resource usage and

latency measured on a 2 vCPU / 2 GB host.

Table 10 Resource Footprint on Test Host (2

vCPU / 2 GB)

Component CPU (avg) Memory

Flask API 9–14% 110 MB

RF Inference 18–26% 160 MB

SQLite

(alerts)
3–6% 40 MB

Table 11 Latency and Throughput

Operation Latency Throughput

Model Load 92 ms –

Batch

Inference

(128)

9.6 ms ∼13k pkt/s

Alert Write

(SQLite)
1.8 ms –

Email

Dispatch

(SMTP)

140 ms avg -

https://irjaeh.com/

International Research Journal on Advanced Engineering Hub (IRJAEH)

e ISSN: 2584-2137

Vol. 03 Issue: 09 September 2025

Page No: 3819-3825

https://irjaeh.com

https://doi.org/10.47392/IRJAEH.2025.0555

International Research Journal on Advanced Engineering Hub (IRJAEH)

3825

7.11. Comparison with Prior Works

Table 12 compares representative prior approaches

to our proposed IDS.

Table 12 Comparison with Existing IDS

Approaches

Work Method Accuracy

Song et al.

[1]

Frequency-

based IDS
76%

Kang et al.

[2]

LSTM-

based IDS
82%

Proposed

IDS

Random

Forest
85.37%

8. Deployment and Operations

Footprint: Suitable for modest gateways.

Observability: Structured logs and metrics (latency,

error codes, queue depth). Resilience: Email

retries/backoff and local buffering during outages.

Safety: Read-only bus taps and least-privilege

service accounts.

9. Security Hardening

Process isolation, authenticated dashboard access,

API rate-limiting, signed model artifacts and TLS for

telemetry reduce the system’s attack surface and help

maintain operator trust.

10. Ethical and Privacy Considerations

No PII is collected; logs contain technical metadata

only. For public or academic release OEM-specific

ID dictionaries are redacted and aggregated

summaries are used to preserve privacy.

11. Failure Modes and Mitigations

Model drift is handled with scheduled retraining and

drift detectors; alert floods are mitigated with rate

limits and digests; storage growth is controlled via

retention and compaction policies.

12. Practical Deployment Notes

Operator context (60–120 s slices), tiered thresholds

(advisory vs paging) and compact feature snapshots

significantly improved triage efficiency in closed-

loop tests.

13. Discussion and Future Work

An effective IDS must balance detection quality with

usability. Future work includes HIL validation,

cross-fleet pilots, and optimizing embedded

inference for ECU-level deployments.

Conclusion

We presented an ML-based IDS for CAN-BUS that

combines a performance Random Forest classifier

(85.37% validation accuracy) with operator-facing

tooling: retraining dashboards, timeline-based

forensics, and safe alerting practices — a pragmatic

step toward improving in-vehicle security.

Acknowledgment

We thank the Department of Computer Science,

AMC Engineering College, Bengaluru, for facilities

and guidance, and our colleagues for helpful

feedback.

References

[1]. H. Song, S. Kim, and H. Kim, “Intrusion

detection system based on frequency analysis

for in-vehicle network,” in Proc. IEEE Int.

Conf. Vehicular Electronics and Safety

(ICVES), 2016.

[2]. M. Kang and J. Kang, “Intrusion detection

system using deep neural network for in-

vehicle network security,” PloS one, vol. 11,

no. 6, 2016.

[3]. OCS-Lab, “OCS-CAN Intrusion Dataset,”

Available: https://ocslab.

hksecurity.net/Dataset/CAN-intrusion-

dataset.

[4]. K. Koscher et al., “Experimental security

analysis of a modern automobile,” in IEEE

Symposium on Security and Privacy, 2010.

[5]. A. Taylor, S. Leblanc, and N. Japkowicz,

“Anomaly-based intrusion detection in

software defined networks,” in IEEE Symp.

on Network Operations and Management,

2016.

[6]. A. (Survey Author), “AI-Based Intrusion

Detection Systems for In-Vehicle Networks,”

ACM Computing Surveys / Communications

(survey), 2022– 2023.

[7]. T. D. Le, et al., “multi-classification in-

vehicle intrusion detection system based on

sequence-level features,” Information

Sciences, 2024.

[8]. (Author(s)), “AI-Driven Intrusion Detection

Systems on automotive datasets: comparative

analysis,” 2024, DOI / preprint.

https://irjaeh.com/

