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Abstract

As vehicles become more connected and software-rich, securing communications inside vehicles is
increasingly important. The Controller Area Network (CAN-BUS) is simple and efficient, which is why it
remains the dominant vehicle network. That simplicity comes at a cost: the protocol lacks built-in
authentication or encryption, leaving it exposed to injection, flooding and impersonation attacks. Here we
describe a practical, real-time Intrusion Detection System (IDS) for CAN-BUS that combines supervised
machine learning with features useful for deployment. The core detector is a Random Forest trained on the
OCS-Lab dataset; it distinguishes benign traffic from DoS, fuzzy and impersonation attacks and achieves a
validation accuracy of 85.37%. Importantly, the IDS is more than a model.: it includes a retraining dashboard,
a timeline for investigation, live packet classification and automated email alerts so operators can react
quickly and with context.

Keywords: Automotive cybersecurity;, CAN-BUS, Intrusion detection system; Machine learning,; Real-time
monitoring.

1. Introduction
Modern vehicles host many electronic control units
(ECUs) that coordinate critical functions such as

2. Background on CAN-BUS
2.1. Frame Structure and Arbitration

engine control, brake, body electronics and driver
assistance. CAN-BUS 1is the standard in-vehicle
backbone because it provides deterministic
arbitration and a degree of fault tolerance. That same
simplicity, however, leaves out cryptographic
protections. An attacker with local access — through
OBD-II, a compromised telematics module, or an
aftermarket device — can inject frames, flood the
bus, or impersonate ECUs; any of these actions can
degrade availability or, worse, safety.

e Motivation: Effective protections must run
in real time on constrained hardware and give
operators concise, actionable signals so they
can triage incidents quickly.

o Contributions: This work presents (i) a
modular ML-based IDS with operator-facing
dashboards and automated alerts. (ii) an end-
to-end capture-to-alert pipeline; (iil) an
empirical evaluation using OCS-Lab data;
and (iv) deployment guidance covering
latency, observability and maintenance.

A standard CAN frame includes an identifier (11- or
29-bit), control fields (including DLC), up to eight
data bytes, CRC, ACK and EOF. Arbitration uses
wired-AND: nodes with lower identifier values win
access to the bus. This scheme supports real-time
priorities but can be abused — an attacker who
repeatedly sends a high-priority identifier can
effectively deny service.

2.2. Error Handling and Fault Confinement
CAN controllers track transmits and receives error
counters; exceeding thresholds causes nodes to enter
error-passive or bus-off modes and stop transmitting.
Attackers can deliberately cause errors using
malformed frames. Because low-level counters are
not always exposed to applications, our IDS
emphasizes timing and distributional statistics that a
passive capture can reliably observe.

3. Related Work

The literature includes interval and frequency
detectors [1], temporal deep models [2], and broader
system-level analyses [4]. Recent surveys and
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comparative analyses summarize Al- driven in-
vehicle IDS approaches and provide a taxonomy of
features and learning methods; this help place our
work in the context of practical, deployment-aware
IDS research. Recent empirical studies show
continuing improvements in sequence and
distributional approaches for CAN IDS. [6]— [8]

4. Problem Formulation

We frame intrusion detection as a multi-class
classification problem with labels for benign, DoS,
fuzzy, and impersonation attacks. Let D = {(xi, yi)}
N be chronological, windowed samples with labels
yi € {0, 1, 2, 3}. Each feature vector xi € Rd
contains message-level, temporal and distributional
statistics. The learning objective is to find f0: Rd —
{0, 1, 2, 3} that maximizes macro-F1 under latency
constraints compatible with gateway deployment.
We also incorporate calibrated scores so alerts can be
tired by operator severity.

5. System Design and Methodology

Figure 1 shows the layered pipeline: capture —
preprocess — classify — visualize/log — alert. A
key engineering choice is to isolate inference from
non-critical subsystems (storage, email), so
temporary service outages do not block detection.

5.1. Dataset
We use the OCS-Lab CAN intrusion dataset [3],
which includes benign traces and labeled attacks
(DoS, fuzzy, impersonation). Each record contains a
timestamp, identifier, DLC and up to eight payload
bytes. Attack classes primarily differ in timing and
payload variability.

5.2. Threat Model and Assumptions
The attacker has local access to the CAN segment
(can inject, replay or flood frames). The IDS operates
as a read-only gateway or passive tap. We assume
legacy CAN without cryptographic protection.

5.3. Feature Engineering and Windowing
Representative features appear in Table 1: message-
level encodings (ID hashing/one-hot, DLC, payload
histograms), per-ID timing statistics, and short-
window aggregates (unique ID ratio, top-k
frequency share). Continuous features are Minmax
scaled. Windows of n = 50 frames with 50% overlap
provide a practical compromise between
responsiveness and stability.
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Table 1 Representative Feature Set (abbrev.)

Feature Type
ID one-hot / hashed Categorical
buckets
DLC Numeric
Payload byte histogram

. Numeric vector
(coarse bins)

Temporal

Inter-arrival time (per ID) numeric

Unique-ID ratio (window) | Temporal stat

Top-k ID frequency share Temporal stat

5.4. Preprocessing and Split
We filter malformed frames, compute per-ID deltas,
and assemble sliding windows in chronological
order. To avoid leakage, we split chronologically:
70% train, 15% validation, 15% test.

5.5. Model Selection and Hyperparameters
We evaluated Random Forest (RF), SVM (RBF) and
Gradient Boosting. RF provided the best trade-off
between accuracy and inference latency on gateway-
class hardware. Typical RF hyperparameters used:
300 trees, max depth 18, min samples split 4, class
weight=balanced, max_features=sqrt.

5.6. Training and Inference Workflow
Algorithm 1 summarizes training and inference:
feature ex- traction, chronological splits, class-
weighted training, artifact persistence (model, scaler,
feature map), and batched inference (128 windows)
with post-processing and thresholding.

Table 2 Algorithm 1 Training and Inference
Workflow

Algorithm 1 Training and Inference

Workflow

1: Load frames; compute features (Table 1);

build windows

2: Chronological split: 70/15/15 train/Val/test

3: Train RF with class weighting; tune

trees/depth on validation

4: Persist best model via job lib; export

scaler/feature map

5: Inference: vectorize — batch predict (128)

— |gost-|grocess
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Fig. 1. ArtSystem Architecture

Figure 1 System architecture of the proposed
CAN-BUS IDS

Interpretation  (Figure 1): Capture and
preprocessing are separated from inference, so
packet bursts do not stall classification. A
lightweight logging layer mirrors decisions to
storage and the dashboard; alerting is handled
asynchronously via SMTP with retries.

Dashboard

Alerts

CAN Pre-‘ ML Model Classificati
Packets cesssing (Random Forest)

Workflow of the Intrusion Detection System for CAN packets.
Figure 2 Workflow pipeline of the proposed
CAN-BUS IDS

Interpretation (Figure 2): Packets are windowed
(50 frames, 50% overlap), scaled and fed to the RF
model in batches of 128. Post-processing applies per-
class thresholds and calibration to produce alert
candidates matched to operator severity levels.
5.7. Service Topology (NEW)

Figure 3 shows the runtime topology: a CAN
capture agent forwards frames to a preprocessor; the
inference service classifies batches; outputs flow to a
dashboard API and a SQLite store; the alerting
service consumes high-confidence events and sends
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email via SMTP with retries and exponential

backoff. These separations limit blast radius and let

components

Capture {—>{Preprocessing—{ Inference /Qfl'] — Alerting

e

y

Storage

Fig, 2. API/Service topology: capture, preprocessing, inference, storage,
dashboard, and alerting

Figure 3 API/Service Topology: Capture,
Preprocessing, Inference, Storage, Dashboard,
And Alerting

6. Implementation

6.1. Frontend (Operator UX)
A React-based UI provides four primary views:
Training (dataset selection, progress, validation
curve), Detection (streaming table with ID,
timestamp and predicted class), Timeline
(aggregated counts and contextual slices), and Set-
tings/Alerts (thresholds, SMTP config, alert history).
Each alert links to a compact snapshot of the feature
vector to accelerate triage.

6.2. Backend Services and API

Table 3 REST API Endpoints (Summary)
Endpoint Method Purpose (Req. —
Resp.)
) Batch features —
/ Classify POST labels & scores
Dataset
/ Retrain POST name/config —
status, val acc
GET/POST
List or
/ Alerts insert alert / Alerts
records
Model summary,
/ Metrics GET confusion, ROC
refs
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A stateless Flask REST API exposes inference and
dashboard endpoints. Models are hot swapped after
validation. Table 2 lists the core endpoints.

6.3. Database and Email Alerting
SQLite stores alerts, retraining runs and metrics.
Email dispatch uses TLS with exponential backoff
and a dead-letter queue, so transient mail failures do
not block inference.
7. Results and Evaluation
We evaluate classification quality, explainability,
robustness and the operator-facing outputs.

7.1. Evaluation Protocol
We report accuracy, precision, recall, F1 and ROC.
For a class ¢ we compute

Precisionc =TPc
Recallc =TPc

F1 is the harmonic meaning of precision and recall.
Confidence intervals  (95%) wuse normal
approximations and McNemar tests assess paired-
model differences.

7.2. Data Characteristics
Table 3 summarizes the training plus validation
counts. The heavy benign skew matches realistic
traffic and motivates class-weighted training.

Table 4 Approximate Class Distribution
(Train+Val)

Class Count (frames
Benign 1,200,000
DoS 220,000
Fuzzy 180,000
Impersonation 110,000

7.3. Accuracy and Curves
Random Forest achieves 85.37% validation
accuracy. The confusion matrix (Figure 4) highlights
strong recall on DoS and fuzzy classes;
impersonation is harder due to overlap with periodic
benign signals. ROC curves (Figure 5) guided
threshold selection for different alerting tiers.
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Figure 4 Confusion matrix of IDS classification
results

7.4. Per-class
Importance
Table 4 reports per-class precision, recall and F1 on
the validation split. Each alert also surfaces top
contributing

Breakdown and Feature

ROC Curves (One-vs-Rest)

0.4

True Positive Rate

0.2 o Benign (AUC=0.54)
- - DoS (AUC=0.66)
Fuzzy (AUC=0.61)

~ Impersonation (AUC=0.59)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure S ROC Curves for Attack Class Detection

features to help operators understand why the model
flagged the event.

Table 5 Per-Class Performance on Validation

Split
Class Precision | Recall F1
Benign 0.87 0.84 0.85
DoS 0.90 0.88 0.89
Fuzzy 0.86 0.83 0.84
Impersonation 0.81 0.79 0.80
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7.5. Thresholding and Calibration
We use Platt scaling for score calibration and choose
thresholds, so paging-level alerts keep FPR near or
below 2% on validation. Example operating points
are shown in Table 5 and 6.

Table 6 Threshold vs Operating Point

(Validation)
Class Thr. | TPR | FPR
DoS 0.58 1 091 | 0.019
Fuzzy 0.55 | 0.89 | 0.021
Impersonation | 0.61 | 0.82 | 0.031

7.6. Ablations: Model and Window Size
We compare different learners and window sizes
(Tables 7 & 8). A window of n = 50 frames gives a
practical balance between macro-F1 and latency for
gateway deployments.

7.7. Robustness to Timing Jitter and Noise
We injected Gaussian jitters at inter-arrival times and
added noise to payload histograms. Performance
degrades gracefully

Table 7 Ablation: Accuracy vs. Inference Time

Inference
Model Val. Acc. (ms/128)
SVM (RBF) 82.4% 34.7
Gradient 83.1% 215
Boosting
Random 85.37% 9.6
Forest

Table 8 Ablation: Window Size vs. F1 and

Latency
. Macro- | Impers.

Window F1 F1 Latency
n=25 0.83 0.77 Low
n =50 0.85 0.80 Med

n =100 0.85 0.81 High

(Table 9), demonstrating the robustness of temporal
and distributional features.
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Table 9 Robustness Under Perturbations
(Validation Macro-F1)

Perturbation Level Macro-F1
None — 0.85
Timing jitter | 0 =0.2 ms 0.84
Timing jitter | ¢ =0.5 ms 0.82
. small (£1
Payload noise bin) 0.84
. mod. (£3
Payload noise bins) 0.83

7.8. Operational Outputs (Dashboards)
Figures 69 show the operator-facing views. High-
confidence alerts include a short rationale and a
compact snapshot to speed investigation.

ATTACK DETECTION
Paccket ID Timesptamp Attack Type

295 10:12:34 Benign
218 10:12:34 DoS

714 10:15:32 Fuzzy
487 10:15:59 Impersonation
153 10:16:46 Beng

543 10:17:48 DoS

Dashboard view displaying real-time intrusion alerts

Figure 6 Dashboard View of Intrusion Alerts

Interpretation (Figure 6): High-confidence events
(solid markers) trigger SMTP alerts while advisory
anomalies annotate the timeline.

ATTACK TIMELINE

— Benign

--- DoS
4 /\/\/\ — Fuzzy
,"‘. r~ S - .+ === Imper-
" A r‘ -‘\ i - s .
% . ’ LAY
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sona-
tion

Numper ot Dalectians
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Graph-based visualization of attack occurrences over time

Figure 7 Timeline visualization of detected
intrusions

International Research Journal on Advanced Engineering Hub (IRJAEH)

3823


https://irjaeh.com/

IRJAEH

International Research Journal on Advanced Engineering Hub (IRJAEH)

Interpretation (Figure 7): Burst patterns typically
indicate DoS, whereas intermittent spikes often map
to fuzzy injections or benign maintenance.

PACKET CLASSIFICATION
Packet ID Classification
295 Benign
218 DoS
714 Fuzzy
153 Impersonation
543 Fuzzy

Tabular results showing classification of CAN packets

Figure 8 Classification Results of CAN Packets

Interpretation (Figure 8): Per-ID listings and
predicted classes help with fast correlation against
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< Incbox

o B o Bl B¢

Message ID: 543
Attack Type: Fuzzy

£) CAN Bus Intrusion Detected

Inbox Archive - Reportspam Delele

Timestmapa : 2024-04-2410:12:37

Automated email alert sent to administrator upon detection
Figure 9 Email alert notifying the administrator

Interpretation (Figure 9): Emails embed an alert
ID, the relevant timestamp window, and the primary

contributing features

7.9. Pipeline Data Flow (NEW)
Table 10 lists processing stages, inputs, outputs and

ECU logs. side effects for auditing and accountability.
Table 10 End-To-End Data Flow: Stages, Inputs, Outputs, Side Effects
Stage Inputs Outputs Side Effect
Capture Raw CAN frames Frame stream ID, )
P (ts, DLC, payload)
Feature vectors,
Preprocess Frame stream win- Preprocess
Inference Feature windows Labels, scores Metrics
Post-process Labels, scores Alert candidates Threshold logs
Storage Alerts/events Indexed records SQLite write
Dashboard API responses Ul tables/graphs Web logs
Email Alert events SMTP messages Retry queue
7.10. Resource Utilization and Latency Table 11 Latency and Throughput
Tables 10 and 11 summarize resource usage and Operation Latency | Throughput
latency measured on a 2 vCPU / 2 GB host.
Model Load 92 ms —
Table 10 Resource Footprint on Test Host (2 Batch
vCPU/2 GB) Inference 9.6 ms ~13Kk pkt/s
Component CPU (avg) Memory (128)
Alert Write
140 _
Flask API 9-14% 110 MB (SQLite) 1.8 ms
RF Inference 18-26% 160 MB Email
. Dispatch 140 ms avg -
SQLite o
(alerts) 3-6% 40 MB (SMTP)
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7.11. Comparison with Prior Works

Table 12 compares representative prior approaches
to our proposed IDS.

Table 12 Comparison with Existing IDS

Approaches
Work Method Accuracy
Song et al. | Frequency- o
[1] based IDS 76%
Kang et al. LSTM- o
[2] based IDS 82%
Proposed Random 0
IDS Forest 85.37%
8. Deployment and Operations
Footprint: ~ Suitable for modest gateways.

Observability: Structured logs and metrics (latency,
error codes, queue depth). Resilience: Email
retries/backoff and local buffering during outages.
Safety: Read-only bus taps and least-privilege
service accounts.
9. Security Hardening
Process isolation, authenticated dashboard access,
API rate-limiting, signed model artifacts and TLS for
telemetry reduce the system’s attack surface and help
maintain operator trust.

10. Ethical and Privacy Considerations
No PII is collected; logs contain technical metadata
only. For public or academic release OEM-specific
ID dictionaries are redacted and aggregated
summaries are used to preserve privacy.

11. Failure Modes and Mitigations
Model drift is handled with scheduled retraining and
drift detectors; alert floods are mitigated with rate
limits and digests; storage growth is controlled via
retention and compaction policies.

12. Practical Deployment Notes
Operator context (60—120 s slices), tiered thresholds
(advisory vs paging) and compact feature snapshots
significantly improved triage efficiency in closed-
loop tests.

13. Discussion and Future Work
An effective IDS must balance detection quality with
usability. Future work includes HIL validation,
cross-fleet pilots, and optimizing embedded
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inference for ECU-level deployments.

Conclusion

We presented an ML-based IDS for CAN-BUS that
combines a performance Random Forest classifier
(85.37% validation accuracy) with operator-facing
tooling: retraining dashboards, timeline-based
forensics, and safe alerting practices — a pragmatic
step toward improving in-vehicle security.
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