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Abstract 

As vehicles become more connected and software-rich, securing communications inside vehicles is 

increasingly important. The Controller Area Network (CAN-BUS) is simple and efficient, which is why it 

remains the dominant vehicle network. That simplicity comes at a cost: the protocol lacks built-in 

authentication or encryption, leaving it exposed to injection, flooding and impersonation attacks. Here we 

describe a practical, real-time Intrusion Detection System (IDS) for CAN-BUS that combines supervised 

machine learning with features useful for deployment. The core detector is a Random Forest trained on the 

OCS-Lab dataset; it distinguishes benign traffic from DoS, fuzzy and impersonation attacks and achieves a 

validation accuracy of 85.37%. Importantly, the IDS is more than a model: it includes a retraining dashboard, 

a timeline for investigation, live packet classification and automated email alerts so operators can react 

quickly and with context. 

Keywords: Automotive cybersecurity; CAN-BUS; Intrusion detection system; Machine learning; Real-time 

monitoring. 

 

1. Introduction 

Modern vehicles host many electronic control units 

(ECUs) that coordinate critical functions such as 

engine control, brake, body electronics and driver 

assistance. CAN-BUS is the standard in-vehicle 

backbone because it provides deterministic 

arbitration and a degree of fault tolerance. That same 

simplicity, however, leaves out cryptographic 

protections. An attacker with local access — through 

OBD-II, a compromised telematics module, or an 

aftermarket device — can inject frames, flood the 

bus, or impersonate ECUs; any of these actions can 

degrade availability or, worse, safety. 

• Motivation: Effective protections must run 

in real time on constrained hardware and give 

operators concise, actionable signals so they 

can triage incidents quickly. 

• Contributions: This work presents (i) a 

modular ML-based IDS with operator-facing 

dashboards and automated alerts. (ii) an end-

to-end capture-to-alert pipeline; (iii) an 

empirical evaluation using OCS-Lab data; 

and (iv) deployment guidance covering 

latency, observability and maintenance. 

2. Background on CAN-BUS 

2.1. Frame Structure and Arbitration 

A standard CAN frame includes an identifier (11- or 

29-bit), control fields (including DLC), up to eight 

data bytes, CRC, ACK and EOF. Arbitration uses 

wired-AND: nodes with lower identifier values win 

access to the bus. This scheme supports real-time 

priorities but can be abused — an attacker who 

repeatedly sends a high-priority identifier can 

effectively deny service. 

2.2. Error Handling and Fault Confinement 

CAN controllers track transmits and receives error 

counters; exceeding thresholds causes nodes to enter 

error-passive or bus-off modes and stop transmitting. 

Attackers can deliberately cause errors using 

malformed frames. Because low-level counters are 

not always exposed to applications, our IDS 

emphasizes timing and distributional statistics that a 

passive capture can reliably observe. 

3. Related Work 

The literature includes interval and frequency 

detectors [1], temporal deep models [2], and broader 

system-level analyses [4]. Recent surveys and 
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comparative analyses summarize AI- driven in-

vehicle IDS approaches and provide a taxonomy of 

features and learning methods; this help place our 

work in the context of practical, deployment-aware 

IDS research. Recent empirical studies show 

continuing improvements in sequence and 

distributional approaches for CAN IDS. [6]– [8] 

4. Problem Formulation 

We frame intrusion detection as a multi-class 

classification problem with labels for benign, DoS, 

fuzzy, and impersonation attacks. Let D = {(𝑥𝑖, 𝑦𝑖)} 

𝑁 be chronological, windowed samples with labels 

𝑦𝑖 ∈ {0, 1, 2, 3}. Each feature vector 𝑥𝑖 ∈ R𝑑 

contains message-level, temporal and distributional 

statistics. The learning objective is to find 𝑓𝜃: R𝑑 → 

{0, 1, 2, 3} that maximizes macro-F1 under latency 

constraints compatible with gateway deployment. 

We also incorporate calibrated scores so alerts can be 

tired by operator severity. 

5. System Design and Methodology 

Figure 1 shows the layered pipeline: capture → 

preprocess → classify → visualize/log → alert. A 

key engineering choice is to isolate inference from 

non-critical subsystems (storage, email), so 

temporary service outages do not block detection. 

5.1. Dataset 

We use the OCS-Lab CAN intrusion dataset [3], 

which includes benign traces and labeled attacks 

(DoS, fuzzy, impersonation). Each record contains a 

timestamp, identifier, DLC and up to eight payload 

bytes. Attack classes primarily differ in timing and 

payload variability. 

5.2. Threat Model and Assumptions 

The attacker has local access to the CAN segment 

(can inject, replay or flood frames). The IDS operates 

as a read-only gateway or passive tap. We assume 

legacy CAN without cryptographic protection. 

5.3. Feature Engineering and Windowing  

Representative features appear in Table 1: message-

level encodings (ID hashing/one-hot, DLC, payload 

histograms), per-ID timing statistics, and short-

window aggregates (unique ID ratio, top-k 
frequency share). Continuous features are Minmax 

scaled. Windows of n = 50 frames with 50% overlap 

provide a practical compromise between 

responsiveness and stability. 

Table 1 Representative Feature Set (abbrev.) 

Feature Type 

ID one-hot / hashed 

buckets 
Categorical 

DLC Numeric 

Payload byte histogram 

(coarse bins) 
Numeric vector 

Inter-arrival time (per ID) 
Temporal 

numeric 

Unique-ID ratio (window) Temporal stat 

Top-k ID frequency share Temporal stat 

 

5.4. Preprocessing and Split 

We filter malformed frames, compute per-ID deltas, 

and assemble sliding windows in chronological 

order. To avoid leakage, we split chronologically: 

70% train, 15% validation, 15% test. 

5.5. Model Selection and Hyperparameters 

We evaluated Random Forest (RF), SVM (RBF) and 

Gradient Boosting. RF provided the best trade-off 

between accuracy and inference latency on gateway-

class hardware. Typical RF hyperparameters used: 

300 trees, max depth 18, min samples split 4, class 

weight=balanced, max_features=sqrt. 

5.6. Training and Inference Workflow 

Algorithm 1 summarizes training and inference: 

feature ex- traction, chronological splits, class-

weighted training, artifact persistence (model, scaler, 

feature map), and batched inference (128 windows) 

with post-processing and thresholding. 

 

Table 2 Algorithm 1 Training and Inference 

Workflow 

Algorithm 1 Training and Inference 

Workflow 

1: Load frames; compute features (Table 1); 

build windows 

2: Chronological split: 70/15/15 train/Val/test 

3: Train RF with class weighting; tune 

trees/depth on validation 

4: Persist best model via job lib; export 

scaler/feature map 

5: Inference: vectorize → batch predict (128) 

→ post-process 
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Figure 1 System architecture of the proposed 

CAN-BUS IDS 

 

Interpretation (Figure 1): Capture and 

preprocessing are separated from inference, so 

packet bursts do not stall classification. A 

lightweight logging layer mirrors decisions to 

storage and the dashboard; alerting is handled 

asynchronously via SMTP with retries. 

 

 
Figure 2 Workflow pipeline of the proposed 

CAN-BUS IDS 

 

Interpretation (Figure 2): Packets are windowed 

(50 frames, 50% overlap), scaled and fed to the RF 

model in batches of 128. Post-processing applies per-

class thresholds and calibration to produce alert 

candidates matched to operator severity levels. 

5.7. Service Topology (NEW) 

Figure 3 shows the runtime topology: a CAN 

capture agent forwards frames to a preprocessor; the 

inference service classifies batches; outputs flow to a 

dashboard API and a SQLite store; the alerting 

service consumes high-confidence events and sends 

email via SMTP with retries and exponential 

backoff. These separations limit blast radius and let 

components 

 

 
Figure 3 API/Service Topology: Capture, 

Preprocessing, Inference, Storage, Dashboard, 

And Alerting 

 

6. Implementation 

6.1. Frontend (Operator UX) 

A React-based UI provides four primary views: 

Training (dataset selection, progress, validation 

curve), Detection (streaming table with ID, 

timestamp and predicted class), Timeline 

(aggregated counts and contextual slices), and Set- 

tings/Alerts (thresholds, SMTP config, alert history). 

Each alert links to a compact snapshot of the feature 

vector to accelerate triage. 

6.2. Backend Services and API 

 

Table 3 REST API Endpoints (Summary) 

Endpoint Method 
Purpose (Req. → 

Resp.) 

/ Classify POST 
Batch features → 

labels & scores 

/ Retrain POST 

Dataset 

name/config → 

status, val acc 

/ Alerts 

GET/POST 

List or 

insert alert 

records 

/ Alerts 

/ Metrics GET 

Model summary, 

confusion, ROC 

refs 
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A stateless Flask REST API exposes inference and 

dashboard endpoints. Models are hot swapped after 

validation. Table 2 lists the core endpoints. 

6.3. Database and Email Alerting 

SQLite stores alerts, retraining runs and metrics. 

Email dispatch uses TLS with exponential backoff 

and a dead-letter queue, so transient mail failures do 

not block inference. 

7. Results and Evaluation 

We evaluate classification quality, explainability, 

robustness and the operator-facing outputs. 

7.1. Evaluation Protocol 

We report accuracy, precision, recall, F1 and ROC. 

For a class c we compute  

Precision𝑐 = 𝑇𝑃𝑐 

Recall𝑐 = 𝑇𝑃𝑐 
F1 is the harmonic meaning of precision and recall. 

Confidence intervals (95%) use normal 

approximations and McNemar tests assess paired-

model differences. 

7.2. Data Characteristics 

Table 3 summarizes the training plus validation 

counts. The heavy benign skew matches realistic 

traffic and motivates class-weighted training. 

 

Table 4 Approximate Class Distribution 

(Train+Val) 

Class Count (frames 

Benign 1,200,000 

DoS 220,000 

Fuzzy 180,000 

Impersonation 110,000 

 

7.3. Accuracy and Curves 

Random Forest achieves 85.37% validation 

accuracy. The confusion matrix (Figure 4) highlights 

strong recall on DoS and fuzzy classes; 

impersonation is harder due to overlap with periodic 

benign signals. ROC curves (Figure 5) guided 

threshold selection for different alerting tiers. 

 

 
Figure 4 Confusion matrix of IDS classification 

results 

 

7.4. Per-class Breakdown and Feature 

Importance 

Table 4 reports per-class precision, recall and F1 on 

the validation split. Each alert also surfaces top 

contributing 

 

 
Figure 5 ROC Curves for Attack Class Detection 

 

features to help operators understand why the model 

flagged the event. 

 

Table 5 Per-Class Performance on Validation 

Split 

Class Precision Recall F1 

Benign 0.87 0.84 0.85 

DoS 0.90 0.88 0.89 

Fuzzy 0.86 0.83 0.84 

Impersonation 0.81 0.79 0.80 
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7.5. Thresholding and Calibration 

We use Platt scaling for score calibration and choose 

thresholds, so paging-level alerts keep FPR near or 

below 2% on validation. Example operating points 

are shown in Table 5 and 6. 

 

Table 6 Threshold vs Operating Point 

(Validation) 

Class Thr. TPR FPR 

DoS 0.58 0.91 0.019 

Fuzzy 0.55 0.89 0.021 

Impersonation 0.61 0.82 0.031 

 

7.6. Ablations: Model and Window Size 

We compare different learners and window sizes 

(Tables 7 & 8). A window of n = 50 frames gives a 

practical balance between macro-F1 and latency for 

gateway deployments. 

7.7. Robustness to Timing Jitter and Noise 

We injected Gaussian jitters at inter-arrival times and 

added noise to payload histograms. Performance 

degrades gracefully 

 

Table 7 Ablation: Accuracy vs. Inference Time 

Model Val. Acc. 
Inference 

(ms/128) 

SVM (RBF) 82.4% 34.7 

Gradient 

Boosting 
83.1% 21.5 

Random 

Forest 
85.37% 9.6 

 

Table 8 Ablation: Window Size vs. F1 and 

Latency 

Window 
Macro-

F1 

Impers. 

F1 
Latency 

𝑛 = 25 0.83 0.77 Low 

𝑛 = 50 0.85 0.80 Med 

𝑛 = 100 0.85 0.81 High 

 

(Table 9), demonstrating the robustness of temporal 

and distributional features. 

Table 9 Robustness Under Perturbations 

(Validation Macro-F1) 

Perturbation Level Macro-F1 

None – 0.85 

Timing jitter 𝜎 = 0.2 ms 0.84 

Timing jitter 𝜎 = 0.5 ms 0.82 

Payload noise 
small (±1 

bin) 
0.84 

Payload noise 
mod. (±3 

bins) 
0.83 

 

7.8. Operational Outputs (Dashboards) 

Figures 6–9 show the operator-facing views. High-

confidence alerts include a short rationale and a 

compact snapshot to speed investigation. 

 

 
Figure 6 Dashboard View of Intrusion Alerts 

 

Interpretation (Figure 6): High-confidence events 

(solid markers) trigger SMTP alerts while advisory 

anomalies annotate the timeline. 

 

 
Figure 7 Timeline visualization of detected 

intrusions 
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Interpretation (Figure 7): Burst patterns typically 

indicate DoS, whereas intermittent spikes often map 

to fuzzy injections or benign maintenance. 

 
Figure 8 Classification Results of CAN Packets 

 

Interpretation (Figure 8): Per-ID listings and 

predicted classes help with fast correlation against 

ECU logs. 

 

 
Figure 9 Email alert notifying the administrator 

 

Interpretation (Figure 9): Emails embed an alert 

ID, the relevant timestamp window, and the primary 

contributing features 

7.9. Pipeline Data Flow (NEW) 

Table 10 lists processing stages, inputs, outputs and 

side effects for auditing and accountability. 

 

Table 10 End-To-End Data Flow: Stages, Inputs, Outputs, Side Effects 

Stage Inputs Outputs Side Effect 

Capture 
Raw CAN frames 

(ts, 

Frame stream ID, 

DLC, payload) 
- 

Preprocess Frame stream 
Feature vectors, 

win- 
Preprocess 

Inference Feature windows Labels, scores Metrics 

Post-process Labels, scores Alert candidates Threshold logs 

Storage Alerts/events Indexed records SQLite write 

Dashboard API responses UI tables/graphs Web logs 

Email Alert events SMTP messages Retry queue 

7.10. Resource Utilization and Latency 

Tables 10 and 11 summarize resource usage and 

latency measured on a 2 vCPU / 2 GB host. 

 

Table 10 Resource Footprint on Test Host (2 

vCPU / 2 GB) 

Component CPU (avg) Memory 

Flask API 9–14% 110 MB 

RF Inference 18–26% 160 MB 

SQLite 

(alerts) 
3–6% 40 MB 

Table 11 Latency and Throughput 

Operation Latency Throughput 

Model Load 92 ms – 

Batch 

Inference 

(128) 

9.6 ms ∼13k pkt/s 

Alert Write 

(SQLite) 
1.8 ms – 

Email 

Dispatch 

(SMTP) 

140 ms avg - 
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7.11. Comparison with Prior Works 

Table 12 compares representative prior approaches 

to our proposed IDS. 

 

Table 12 Comparison with Existing IDS 

Approaches 

Work Method Accuracy 

Song et al. 

[1] 

Frequency-

based IDS 
76% 

Kang et al. 

[2] 

LSTM-

based IDS 
82% 

Proposed 

IDS 

Random 

Forest 
85.37% 

 

8. Deployment and Operations 

Footprint: Suitable for modest gateways. 

Observability: Structured logs and metrics (latency, 

error codes, queue depth). Resilience: Email 

retries/backoff and local buffering during outages. 

Safety: Read-only bus taps and least-privilege 

service accounts. 

9. Security Hardening 

Process isolation, authenticated dashboard access, 

API rate-limiting, signed model artifacts and TLS for 

telemetry reduce the system’s attack surface and help 

maintain operator trust. 

10. Ethical and Privacy Considerations 

No PII is collected; logs contain technical metadata 

only. For public or academic release OEM-specific 

ID dictionaries are redacted and aggregated 

summaries are used to preserve privacy. 

11. Failure Modes and Mitigations 

Model drift is handled with scheduled retraining and 

drift detectors; alert floods are mitigated with rate 

limits and digests; storage growth is controlled via 

retention and compaction policies. 

12. Practical Deployment Notes 

Operator context (60–120 s slices), tiered thresholds 

(advisory vs paging) and compact feature snapshots 

significantly improved triage efficiency in closed-

loop tests. 

13. Discussion and Future Work 

An effective IDS must balance detection quality with 

usability. Future work includes HIL validation, 

cross-fleet pilots, and optimizing embedded 

inference for ECU-level deployments. 

Conclusion 

We presented an ML-based IDS for CAN-BUS that 

combines a performance Random Forest classifier 

(85.37% validation accuracy) with operator-facing 

tooling: retraining dashboards, timeline-based 

forensics, and safe alerting practices — a pragmatic 

step toward improving in-vehicle security. 
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