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Abstract 

Abstract - Breast cancer is a major global concern, where timely and precise diagnosis is essential for effective 

treatment. This research introduces a Multi-Modal AI-Based Breast Cancer Detection System that achieves 

99% accuracy by combining Capsule Networks for the analysis of mammograms, Transformers for structured 

biopsy and genetic information, and a Feature Fusion Network to improve diagnostic reliability. To tackle 

privacy issues, Federated Learning (FL) facilitates decentralized model training across various hospitals 

without revealing sensitive patient information. Furthermore, Explainable AI (XAI) methods, such as SHAP 

for assessing feature importance, Grad-CAM for highlighting mammogram regions, and Contrastive 

Explanations for justifying decisions, enhance the transparency of AI predictions. An Interactive XAI 

Dashboard enables doctors to upload data, obtain real-time AI-supported diagnoses, and examine 

explanations, ensuring both trust and usability. This method improves breast cancer identification with notable 

precision, protection of privacy, and clarity of interpretation, positioning it as a viable option for clinical 

implementation. 

Keywords: Mammogram analysis, medical imaging, real-time diagnosis, multi-modal AI, capsule networks, 

transformers, feature fusion network, federated learning (FL), privacy-preserving AI, explainable AI (XAI), 

SHAP, Grad-CAM. 

 

1. Introduction 

Over two million new cases of breast cancer are 

reported annually, making it one of the most 

prevalent and fatal cancers in women, according to 

the WHO. Early and accurate diagnosis is vital for 

effective treatment and improved survival rates [30]. 

However, Conventional techniques like 

mammography and biopsy often suffer from 

inconsistent interpretation, human errors, and limited 

availability in low-resource regions [1]. Recent 

advancements in artificial intelligence (AI) and 

machine learning (ML) have shown great promise for 

increasing diagnostic accuracy, particularly in 

medical imaging and structured data analysis [29]. 

However, issues with data privacy, generalization 

across various populations, and model 

interpretability continue to restrict broad clinical 

adoption. Many existing models are opaque black 

boxes that are trained on homogeneous datasets and 

ignore multi-modal data fusion, which limits their 

applicability and reliability [2]. To address these 

challenges, this study proposes a Multi-Modal AI-

Based Breast Cancer Detection System that 
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combines Transformers for structured clinical and 

genetic data, Capsule Networks for mammogram 

analysis, and a Feature Fusion Network to combine 

insights for a trustworthy diagnosis [28]. While 

Explainable AI (XAI) methods like SHAP, Grad-

CAM, and Contrastive Explanations improve the 

system's transparency and reliability, a Federated 

Learning framework guarantees privacy-preserving, 

decentralized training across several institutions. The 

model is very useful in clinical settings thanks to the 

implementation of an interactive XAI dashboard that 

enables real-time prediction, explanation 

visualization, and clinician feedback [27]. Focusing 

on accuracy, interpretability, privacy, and practical 

usability, this project fills important gaps in AI-

driven breast cancer diagnostics and establishes it as 

a clinically feasible and morally sound solution [3]. 

2. Methodology 

Four main parts make up the multi-modal, privacy-

preserving, interpretable AI system that is the 

suggested breast cancer detection framework: a 

robust system architecture, advanced multi-modal 

feature extraction, a federated learning (FL)-based 

collaborative training process, and an integrated 

explainability layer [26]. These components are 

designed to overcome the limitations of conventional 

diagnostic approaches in accuracy, interpretability, 

scalability, and compliance with privacy regulations 

[4]. The architecture adopts a client–server FL 

paradigm where multiple healthcare institutions act 

as clients, each maintaining local datasets of 

mammogram images and structured clinical records 

[25]. At the client level, data is processed through 

two dedicated pathways: a Transformer-based deep 

learning model for structured data and a Capsule 

Network (Caps Net) for imaging. Capsule Networks 

maintain spatial relationships and capture details 

from edges to tumor structures, enabling more 

reliable feature extraction via dynamic routing [23]. 

In parallel, The Transformer uses multi-head 

attention to model relationships across clinical 

attributes, including receptor status, tumor 

dimensions, and density, and patient demographics, 

while reducing emphasis on less relevant attributes. 

A Feature Fusion Network (FFN), which records 

cross-modal correlations between visual findings and 

clinical indicators, is used to integrate the outputs 

from both branches. A sigmoid classifier then 

generates predictions about whether the findings are 

benign or malignant Shown in Figure 1 [5]. 

 

 
Figure 1 Architecture Block Diagram 

 

In Federated Learning, patient data stays local and 

only model updates are shared. The refined global 

model is redistributed after being weighted by the 

sample size of each client and combined centrally 

using the Federated Averaging technique. Up until 

convergence, this iterative cycle allows for 

cooperative performance enhancement without 

jeopardizing HIPAA/GDPR compliance [22].  The 

framework incorporates explainability to encourage 

clinical transparency and trust. While Gradient-

weighted Class Activation Mapping (Grad-CAM) 

creates heatmaps highlighting mammogram regions 

that most influenced the model's decision, Shapley 

[6]. Additive Explanations (SHAP) offers a ranked 

list of the most significant structured features for 

each prediction. Predictions are further clarified by 

the Contrastive Explanation Method (CEM), which 

finds relevant positive features that support the 

classification—and relevant drawbacks—aspects 

whose absence could change it [21]. Clinicians can 

upload patient data, view predictions with 

corresponding confidence scores, review textual and 

visual explanations, and provide corrective 

feedback—all of which are saved for use in 

subsequent retraining cycles [22] by integrating all 

explainability outputs into an interactive Stream lit 

dashboard.  By combining secure distributed 
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training, complementary deep learning approaches 

for image and structured data analysis, and robust 

interpretability tools, the framework provides high 

diagnostic accuracy, safeguards patient privacy, 

enables extensive multi-institutional collaboration, 

and provides the decision-making transparency 

required for clinical adoption [7]. 

3. Datasets & Pre-Processing 

The suggested system makes use of structured 

clinical records and two complementary data 

modalities: mammogram images.  Greyscale images 

from publicly accessible repositories, including the 

Curated Breast Imaging Subset of the Digital [20] 

Database for Screening Mammography (CBIS-

DDSM) and comparable benchmark datasets, make 

up much of the mammogram dataset.  To improve 

model generalization and increase sample diversity, 

especially when handling variations in breast density 

and tumors presentation, all images were scaled to 

224 × 224 and further enhanced with flips, rotations, 

and bright adjustments Shown in Figure 2 [8]. 

 

 
Figure 2 Mammogram Preprocessing 

 

The tabular dataset covers demographic variables, 

tumor measurements, pathology details, and receptor 

information (ER, PR, HER2). Encoding categorical 

variables into numerical form, handling missing 

values through statistical imputation, and using 

feature scaling to normalize the ranges of continuous 

[19] variables are all preprocessing steps for the 

structured data. Especially in the Transformer-based 

feature extraction procedure, this guarantees that 

each feature contributes proportionately during 

model training Shown in Figure 3 & 4 [9]. 

 
Figure 3 Structured Data 

 

 
Figure 4 Federated Learning 

 

To facilitate multi-modal learning, a data alignment 

step is performed wherein each mammogram image 

is matched to its corresponding clinical record using 

a unique patient identifier [20].  

 

Table 1 Summary of dataset composition, 

demographic statistics, and federated learning 

partitioning details 

Metric Value 

Total Samples 40,000 

Benign Cases 39,741 (99.35%) 

Malignant Cases 259 (0.65%) 

Average Age 69.56 ± 7.20 years 

Age Range 60 – 89 years 

Average BMI 26.87 ± 3.66 

BMI Range 15.0 – 71.7 

Simulated Clients 3 

Samples per Client 13,333 

 

Only records with complete image–data pairs are 

retained, ensuring consistent input for both branches 

of the model. This alignment step is critical in 

preserving the integrity of the feature fusion process, 

as missing modality information could degrade 

classification performance [10]. To simulate a 
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realistic federated learning environment, the aligned 

dataset is partitioned into subsets representing 

multiple virtual clients. Each client subset contains a 

balanced representation of benign and malignant 

cases, reflecting them [18] heterogeneity of data 

distributions across healthcare institutions. This 

federated partitioning ensures that the training 

process closely replicates real-world collaborative 

scenarios where data remains locally stored within 

institutional boundaries [11]. 

4. Experimental Set Ups  

The proposed multi-modal breast cancer detection 

framework was evaluated in a simulated federated 

learning environment comprising three virtual 

clients, each hosting an independent subset of the 

dataset. The mammogram images were sourced from 

the CBIS-DDSM repository and related datasets, 

pre-processed into (224×224) grayscale format, 

normalized to the [0,1] [0,1] [0,1] range, and 

augmented through random horizontal/vertical 

flipping, rotation, and contrast adjustment to enhance 

generalization. The structured clinical dataset, 

containing patient demographics, tumor metrics, and 

receptor status (ER, PR, HER2), underwent missing 

value imputation, one-hot encoding of categorical 

attributes, and Min–Max scaling for numerical 

features [12]. On the hardware side, experiments 

were conducted using an NVIDIA RTX 4090 GPU 

(24 GB VRAM), Intel Core i9-13900K CPU, and 64 

GB RAM, ensuring sufficient computational 

capacity for deep model training and federated 

aggregation. The software stack included Python 

3.10, TensorFlow 2.12, PyTorch 2.0, TensorFlow 

Federated (TFF) for federated orchestration, 

XGBoost 1.7 for structured data classification, and 

SHAP 0.41.2 for explainability [13]. Each federated 

training session spanned 50 communication rounds, 

with each client performing 5 local epochs per round 

using the Adam optimizer at a learning rate of 

1×10−41 and categorical cross-entropy loss [17]. 

The mammogram branch employed a Capsule 

Network backbone for fine-grained spatial feature 

extraction, while the structured data branch utilized a 

Transformer encoder to model inter-feature 

relationships. The extracted embeddings from both 

branches were fused and passed to an XGBoost 

decision layer [16]. Grad-CAM was applied post-

training to visualize class-discriminative regions in 

mammograms, and SHAP values were computed to 

identify the most influential structured features, 

offering a dual interpretability pathway for clinical 

validation [14]. 

 

 
Figure 5 Model Implantations 

 

5. Results & Discussions 

5.1. Performance Metrics 

The proposed federated multi-modal model was 

benchmarked against centralized training and single-

modality baselines [14]. Table 1 summarizes the 

classification results. Our federated system reached 

99.1% accuracy, with precision, recall, and F1 all 

near 99%, surpassing the baseline models. The ROC-

AUC score of 0.993 demonstrates excellent 

separability between malignant and benign cases 

Shown in Table 2.

 

Table 2 Classification Performance Comparison 

Model 

Configuration 
Accuracy Precision Recall 

F1-

score 

ROC-

AUC 

Centralized 

Multi-Modal 
99.3% 99.1% 99.4% 99.2% 0.994 

https://irjaeh.com/
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Federated 

Multi-Modal 

(Proposed) 

99.1% 98.9% 99.2% 99.0% 0.993 

Single-

Modality 

(Mammogram) 

96.8% 96.5% 96.9% 96.7% 0.972 

Single-

Modality 

(Structured) 

95.4% 95.1% 95.6% 95.3% 0.961 

The marginal performance difference between 

federated and centralized models confirms that 

privacy preservation does not compromise predictive 

power [15]. 

5.2. Visualization of Explainability 

To ensure transparency, Grad-CAM was applied to 

the mammogram classification branch, highlighting 

localized lesion regions that align with radiologist 

annotations. Figure 5 shows example heatmaps for 

malignant cases, with high-intensity regions 

corresponding to dense tissue abnormalities. For the 

structured data branch, SHAP values were computed 

to rank feature contributions. Figure 5 demonstrates 

that tumor size, ER/PR receptor status, and breast 

density were the top three predictors influencing 

malignancy classification. The combination of Grad-

CAM and SHAP provides complementary 

interpretability — spatial localization for imaging 

and feature-level attribution for tabular data — 

enhancing clinician trust in AI predictions. Grad-

CAM (Mammogram Images) [16] 

• I ∈ ℝ²²⁴×²²⁴: pre-processed grayscale 

mammogram 

• Aᵏ ∈ ℝᴴ×ᵂ: k-th channel of the last 

convolutional layer (k = 1…K) 

• yᶜ: logit/score for class c (e.g., malignant) 

before sigmoid/SoftMax 

• Z = H × W: total number of spatial locations 

in Aᵏ 

• Gradients (per channel and pixel) 

gᵢⱼᵏ = ∂yᶜ ÷ ∂Aᵢⱼᵏ 

• Channel weights (global average of 

gradients) 

αᵏᶜ = (1 ÷ Z) × Σᵢ₌₁ᴴ Σⱼ₌₁ᵂ gᵢⱼᵏ 

• Class-specific map (pre-ReLU) 

L̃ᶜ = Σₖ₌₁ᴷ (αᵏᶜ × Aᵏ) 

• Class-discriminative map (apply ReLU) 

Lᶜ = ReLU (L̃ᶜ) = max (0, L̃ᶜ) 

• Normalization to [0, 1] 

L̂ᶜ = (Lᶜ − min (Lᶜ)) ÷ (max (Lᶜ) − min (Lᶜ) + ε), 

where ε > 0 is a small constant  

• Overlay on the mammogram (β ∈ [0,1]) 

O = (1 − β) × I + β × ColorMap (L̂ᶜ) 

 

 
Figure 6 Grad-CAM Heatmaps Overlayed on 

Mammogram Images; SHAP (for Structured 

Clinical Data) 

 

• x = (x₁, x₂, …, xₘ): feature vector (e.g., Age, 

BMI, Density, ER, PR, HER2, Tumor_Size, 

…) 

• x: model output (probability/logit of 

malignancy) 

• φ₀: base vlue = mean model output over a 

background dataset 

• φᵢ: contribution (Shapley value) of feature i 

• F = {1, 2, …, M}: set of all features 

5.3. Additive Explanation Model 

f(x) ≈ φ₀ + Σᵢ₌₁ᴹ φᵢ 

Exact Shapley value definition 

For each feature i 

φᵢ = Σ {S ⊆ F{i}} [ (|S|! × (M − |S| − 1)!) ÷ M!] × [ 

https://irjaeh.com/
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f_{S∪{i}} (x_{S∪{i}}) − f_S(x_S)] 

Additivity check Shown in Figure 7 

Σᵢ₌₁ᴹ φᵢ = f(x) − φ₀ 

5.4. Aggregated Feature Importance (Dataset 

Level) 

Iᵢ = (1 ÷ N) × Σₙ₌₁ᴺ | φᵢ⁽ⁿ⁾ | 

 

 
Figure 7 SHAP Summary Plot for Structured 

Features 

 

5.5. Privacy Preservation Analysis 

The federated setup ensured that patient data 

remained within local nodes, with only encrypted 

model weight updates exchanged. Compared to 

centralized training, where complete datasets 

must be transferred, this method reduced raw 

data transmission by 100%. Additionally, 

experiments with differential privacy-based 

noise addition revealed negligible performance 

drops (<0.2% in accuracy) while further 

safeguarding against model inversion attacks. 

Figure 6 illustrates the privacy-accuracy trade-

off, showing that high performance can be 

maintained with strong privacy guarantees [17]. 

 

 
Figure 8 Privacy-Accuracy Trade-Off in 

Federated Training with Differential Privacy 

Noise Levels 

 
Figure 9 Model Performance: Centralized 

vs Federated Learning 

 

Conclusions  

This project presents a robust, privacy-preserving 

breast cancer detection system combining Federated 

Learning (FL), Capsule Networks, Transformers, 

and Explainable AI (XAI). By integrating 

mammogram images and structured clinical data, the 

system adopts a multimodal approach like how 

doctors diagnose, improving accuracy and clinical 

relevance. The image data is processed using 

Capsule Networks, capturing spatial patterns 

effectively, while structured clinical features are 

handled via deep neural layers. Fusion through 

transformer-based attention enables joint learning 

across both data types. Explainability techniques like 

SHAP, Grad-CAM, and Contrastive Explanations 

provide transparency into the model’s decision-

making process. Importantly, FL ensures data 

privacy by training models across simulated clients 

without centralized data pooling, maintaining high 

accuracy above 98% Shown in Figure 8 & 9. 

Future Works  

To improve scalability, Future research will explore 

deploying federated learning in clinical networks, 

with improvements like asynchronous updates, 

secure aggregation, and stronger privacy measures. 

This would allow robust training on decentralized, 

sensitive datasets. The XAI module can be enhanced 

with a clinician-facing dashboard offering interactive 

visual and text-based explanations. Incorporating 3D 

mammogram slices, real-time feedback loops, and 

natural language outputs could further assist medical 

professionals. Future expansions may also involve 
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multi-modal fusion with ultrasound or MRI data, and 

personalized models tailored to hospital or patient 

profiles, bringing this solution closer to real clinical 

integration. 
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