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Abstract 

In recent years, artificial intelligence (AI) has emerged as a transformative force in optimizing solar energy 

systems. This review presents a comprehensive, decade-long analysis of AI methodologies applied to various 

facets of solar energy, including irradiance forecasting, power output prediction, system optimization, and 

fault detection. The study synthesizes findings from over 30 key publications, categorizing AI techniques such 

as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Long Short-Term Memory (LSTM) 

networks, and hybrid models. Experimental results reveal that deep learning, particularly CNN-LSTM 

architecture, offers superior forecasting accuracy, while ensemble methods like Random Forest and XGBoost 

are highly effective for classification tasks. The work also delves into emerging themes like Explainable AI 

(XAI), Federated Learning, and Edge AI, stressing the requirements of more interpretable, privacy-protecting, 

and generalizable models. By summarizing existing issues and directions for the future, this review is intended 

to act as an opening reference for researchers, engineers, and policymakers wanting to apply AI to sustainable 

solar energy development. 

Keywords: Solar Energy Optimization, Forecasting Models, Photovoltaic Systems, Edge Computing, 

Federated Learning, Smart Grid Integration. 

 

1. Introduction 

With the world struggling to come to terms with the 

dual menaces of global warming and energy security, 

solar power has emerged as one of the most 

sustainable and rapidly expanding alternatives for 

green energy. Solar photovoltaic (PV) technology 

has especially seen explosive development due to 

declining prices, enhanced efficiencies, and all-

round government support [1]. However, the 

intermittent and varying quality of solar energy 

continues to present severe challenges in integrating 

solar power into power grids and mass energy 

systems effectively. Hence, optimizing solar energy 

systems for optimal efficiency, reliability, and cost-

effectiveness has been high on the priority list for 

research. Meanwhile, the past decade has witnessed 

the meteoric rise of artificial intelligence (AI) 

technology, which has revolutionized several 

industries like healthcare, finance, transportation, 

and, more recently, energy. AI, encompassing 

machine learning (ML), deep learning (DL), 

reinforcement learning (RL), and hybrid intelligent 

systems, offers robust tools for modeling intricate 

systems, predicting outcomes, and decision-making 

automation procedures [2]. In solar power, AI 

methods are being used extensively to address a 

plethora of issues such as predicting solar irradiance, 

power generation forecast, fault detection, 

performance optimization, and maintenance 

scheduling [3]. The interaction between AI and solar 

power technology is a paradigm shift in the design, 

management, and maintenance of renewable energy 

systems. This integration can potentially enhance the 

efficiency of solar installations, reduce operation 

costs, increase the lifespan of the system, and 

facilitate smart grid and decentralized energy market 

integration more efficiently [4]. But despite as much 

as there is literature and applications in this area, it 

continues to face several challenges. These are data 

heterogeneity, interpretability of the model, 

generalizability to different geographical and 

climatic conditions, and lack of standard 

benchmarking datasets and testing methodologies 
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[5]. Furthermore, current AI applications in solar 

power are still disconnected. Most research 

investigations tend to concentrate on narrow problem 

areas, utilize different methodologies, and apply 

varying metrics, a fact that complicates the 

comparison of findings or extrapolation of results 

across various systems or regions. There is also a 

notable lack of comprehensive reviews that 

systematically classify, compare, and critically 

assess the AI methods applied to solar energy 

optimization over the past decade. Many reviews 

focus on either forecasting techniques or hardware 

optimization, but few offer an integrated, decade-

long perspective that captures the full breadth of AI’s 

impact on solar energy systems. This survey attempts 

to fill this gap by offering a systematic, humanized, 

and critical analysis of all principal AI methods used 

in solar energy optimization during the last decade. 

The paper is intended to be a thorough guide for 

scholars, professionals, and policymakers by 

integrating central developments, pinpointing 

emerging patterns, and tracing current constraints 

and future lines of research. In the subsequent 

sections, readers can anticipate a comprehensive 

categorization of AI techniques—spanning from 

supervised learning algorithms to hybrid models—

coupled with their individual applications, 

advantages, disadvantages, and performance results 

in actual environments. The latest developments 

indicate that deep learning models, especially LSTM 

networks, have been able to greatly enhance solar 

irradiance forecasting precision compared to 

conventional models [8]. GA and ANN-based hybrid 

models have exhibited potential in enhancing system 

performance and computational efficiency [9], 

whereas ensemble learning methods have resulted in 

increased robustness in PV power prediction [11]. 

Explainable AI (XAI) is gaining prominence due to 

its potential to fill the gap between black-box models 

and real-world, interpretable solutions [15]. 

 

 

 

Table 1 Summary of Key Studies on AI Methods in Solar Energy Optimization 

Year Title Focus Findings 

2013 

Artificial neural 

networks-based 

prediction of solar 

radiation 

Predicting solar 

irradiance using 

ANN 

Demonstrated that ANN models 

could outperform traditional 

statistical models in accuracy for 

solar radiation forecasting [6]. 

2015 

Support Vector 

Machine (SVM) 

approach for solar 

energy prediction 

Using SVM for 

energy output 

prediction 

Found SVM to be effective for short-

term PV output forecasting, 

especially in limited-data scenarios 

[7]. 

2016 

Deep learning-based 

solar irradiance 

forecasting using LSTM 

Applying LSTM 

networks for time-

series prediction 

LSTM outperformed traditional ML 

models by capturing long-term 

dependencies in solar irradiance data 

[8]. 

2017 

Hybrid model 

combining GA and 

ANN for PV system 

optimization 

System 

performance 

optimization using 

hybrid models 

A GA-ANN hybrid improved PV 

efficiency and reduced 

computational cost by optimizing 

model parameters [9]. 
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2018 

Application of random 

forest in fault detection 

of PV panels 

Fault detection in 

PV systems 

Random Forest models achieved 

high accuracy in detecting module 

faults, helping reduce maintenance 

costs [10]. 

2019 

Ensemble learning for 

PV power forecasting: 

A review 

Review of 

ensemble methods 

in forecasting 

Concluded that ensemble approaches 

(e.g., bagging, boosting) 

significantly improved model 

robustness and accuracy [11]. 

2020 

CNN-based approach 

for real-time solar 

power prediction 

Use of 

Convolutional 

Neural Networks 

for output 

prediction 

CNNs could extract spatial features 

from sky images and improve 

prediction of solar power generation 

in real time [12]. 

2021 

Reinforcement learning 

in solar tracking 

systems 

RL-based tracking 

control for PV 

modules 

Reinforcement Learning-based 

tracking significantly increased 

energy yield in dynamic 

environments [13]. 

2022 

Review of AI 

techniques for solar 

energy system 

optimization 

Comprehensive 

review of AI in 

solar optimization 

Identified trends towards hybrid 

models, emphasized challenges in 

data availability and interpretability 

[14]. 

2023 

Explainable AI (XAI) 

models in solar 

forecasting 

Enhancing 

transparency of AI 

predictions 

Proposed XAI integration to improve 

user trust and regulatory compliance 

without sacrificing accuracy in solar 

forecasting models [15]. 

 
Figure 1 Block Diagram of the Proposed Model 

 

2. Proposed Theoretical Model  

The use of artificial intelligence (AI) in solar energy 

systems has revolutionized the control of energy 

forecasting, system optimization, and fault detection. 

The subsequent hypothesized theoretical model 

illustrates a modular and scalable AI-oriented solar 

energy optimization strategy. It is an end-to-end 

model founded on intelligent learning and 

optimization algorithms, from the collection of data 

to output. 

2.1. Data Acquisition 

This stage involves gathering real-time and historical 

data from various sources including: 

• Weather stations (temperature, humidity, 

cloud cover) 

• Solar irradiance sensors 

• Photovoltaic (PV) system outputs 

• Satellite imagery 

These datasets serve as the foundation for all 

subsequent analysis and modeling steps [16]. 

2.2. Data Preprocessing 

Raw data is often noisy, incomplete, and 

unstructured. Preprocessing involves: 

• Data cleaning: Removing or imputing 
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missing or corrupted values 

• Feature engineering: Creating relevant 

input variables from raw data 

• Normalization/scaling: To improve model 

performance and convergence. 

Preprocessing is critical, as the quality of input data 

greatly influences the accuracy and generalizability 

of AI models [17]. 

3. AI Model Development 

This module comprises the core machine learning or 

deep learning model trained to perform tasks such as: 

• Forecasting solar irradiance or PV output 

using ANN, SVM, or LSTM 

• Fault detection via classification algorithms 

like Random Forest 

• Performance estimation and anomaly 

detection the choice of AI model depends on 

data size, feature complexity, and the specific 

problem domain [18]. 

3.1. Model Optimization 

Once the AI model is built, optimization is conducted 

to enhance predictive performance and operational 

efficiency. Common techniques include: 

• Genetic Algorithms (GA) 

• Particle Swarm Optimization (PSO) 

• Hybrid approaches (e.g., ANN + GA) 

These metaheuristic algorithms fine-tune parameters 

such as learning rates, weights, and network 

architecture [19]. 

3.2. Output Generation 

The final output can include: 

• Forecasted solar energy production (for 

grid integration or storage planning) 

• Real-time control signals for solar trackers 

or smart inverters 

• Alerts and diagnostics for maintenance and 

fault repair 

These outputs are designed to support real-time 

decision-making and strategic energy management 

[20]. 

3.3. In-Depth Discussion and Applications 

This theoretical model not only provides a 

framework for implementing intelligent solar 

systems but also highlights how modular AI 

components can be applied in real-world solar 

infrastructure. For example: 

• LSTM networks have been successfully 

applied for short-term irradiance prediction 

due to their ability to capture temporal 

patterns [18]. 

• CNNs can process sky images to predict 

cloud movements and enhance prediction 

accuracy [21]. 

• Reinforcement learning has demonstrated 

improvements in dynamic solar tracking 

systems, increasing energy capture in non-

static conditions [22]. 

Despite these developments, the most critical 

challenges include constrained access to high-quality 

data, lack of interpretability for black-box models, 

and computational cost of training deep models on 

large-scale solar farms [23]. To counteract these 

challenges, integration of Explainable AI (XAI) 

approaches is being investigated to enhance model 

interpretability without diminishing predictive 

performance. Through this, stakeholders (e.g., 

energy managers, engineers, policymakers) can have 

greater confidence in and respond to AI-based 

guidance [24]. 

4. Experimental Results, Graphs, and Tables 

This section provides a comparison of experimental 

findings from notable studies that used AI models 

like Artificial Neural Networks (ANNs), Support 

Vector Machines (SVMs), Long Short-Term 

Memory networks (LSTM), Random Forests (RF), 

and hybrid optimization methods on real-world solar 

energy data. The main emphasis is on performance 

in forecasting, computational time, accuracy in fault 

detection, and interpretability. 

4.1. Comparative Performance of AI Models 

in Forecasting 

The most popular use of AI in solar power is short- 

and long-term solar irradiance and PV output 

forecasting. Table 2 summarizes comparative results 

reported across multiple studies using standard 

performance metrics: Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), 

and R² (coefficient of determination). From the 

above, it is evident that deep learning architectures—

particularly hybrid CNN + LSTM models—yield 

superior performance due to their ability to extract 

spatial (CNN) and temporal (LSTM) features [29]. 

https://irjaeh.com/
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Table 2 Performance Comparison of AI Models on PV Output Forecasting 

Model 
RMSE 

(W/m²) 

MAPE 

(%) 
R² Score Reference 

ANN 35.6 4.52 0.94 [25] 

SVM 40.1 5.37 0.91 [26] 

LSTM 28.4 3.81 0.96 [27] 

RF 32.7 4.09 0.93 [28] 

CNN + 

LSTM 
25.3 3.19 0.97 [29] 

Note: Lower RMSE and MAPE, higher R² indicate better model performance. 

 

4.2. Graph: Forecast Accuracy Comparison 

 

 
Figure 1 Forecasting RMSE Comparison Across 

AI Models Based on Data from [25]– [29] 

Below is a comparative bar graph visualizing RMSE 

values for various AI models used in solar energy 

forecasting. 

4.3. Fault Detection Accuracy 

In solar farms, quick and accurate fault detection 

ensures operational continuity. Table 3 presents 

classification accuracy rates for different models 

used in PV panel fault diagnosis. This comparison 

illustrates that ensemble models like Random Forest 

and XG Boost provide more robust and generalizable 

results than single-tree models or even neural 

networks for classification tasks [33]. 

 

Table 3 Accuracy of AI-Based Fault Detection Models 

Model 
Accuracy 

(%) 
Precision Recall F1-Score Reference 

Decision 

Tree 
85.3 0.84 0.85 0.845 [30] 

Random 

Forest 
91.4 0.90 0.91 0.905 [31] 

ANN 89.6 0.88 0.89 0.885 [32] 

XGBoost 93.2 0.92 0.93 0.925 [33] 
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This comparison illustrates that ensemble models 

like Random Forest and XG Boost provide more 

robust and generalizable results than single-tree 

models or even neural networks for classification 

tasks [33]. 

4.4. Model Training Time and Efficiency 

AI model efficiency is critical for deployment in 

embedded or edge-based solar monitoring systems. 

Table 4 shows the average training times for models 

under similar hardware conditions (Intel Core i7, 

16GB RAM). 

 

Table 4 Average Training Time Comparison 

(100 Epochs, Dataset: 1 Year of Hourly Data) 

Model 
Training Time 

(Minutes) 
Reference 

ANN 22 [25] 

SVM 15 [26] 

LSTM 40 [27] 

CNN + 

LSTM 
55 [29] 

XGBoost 18 [33] 

 

While LSTM-based models offer higher accuracy, 

they are computationally more expensive. Models 

like XGBooststrike a balance between speed and 

performance, making them suitable for real-time 

environments [33]. 

4.5. Explainability and Interpretability (XAI 

Integration) 

Recent developments emphasize not only accuracy 

but also the explainability of AI models. Tools such 

as SHAP (SHapley Additive Explanations) and 

LIME (Local Interpretable Model-Agnostic 

Explanations) have been applied to solar energy 

models to help identify which features (e.g., 

irradiance, temperature, time of day) most influence 

predictions [34]. These explainability tools enhance 

user trust, especially in high-stakes systems where 

black-box models are not acceptable [35]. shows 

feature importance scores using SHAP  

4.6. Simulated SHAP Output – Feature 

Importance 

 

 
Figure 2 Below (Simulated for Illustrative 

Purposes) Values for an XGBoost Model 

 

5. Conclusion of Experimental Results 

The experimental analysis shows: 

• LSTM and hybrid CNN-LSTM models 

dominate in forecasting accuracy, though 

they are more resource-intensive. 

• Random Forest and XGBoost lead in 

classification and fault detection tasks due to 

their balance of accuracy and efficiency. 

• Explainable AI techniques are gaining 

traction and help bridge the gap between 

high-performing black-box models and real-

world transparency requirements. 

6. Future Directions 

As artificial intelligence continues to revolutionize 

the energy sector, several promising research 

avenues remain unexplored or underdeveloped in the 

context of solar energy optimization. These future 

directions offer both practical and theoretical 

opportunities for advancement: 

6.1. Integration of Edge AI and IoT 

There is a growing interest in deploying Edge AI—

AI models that operate on embedded systems or edge 

devices like microcontrollers—particularly in 

Internet of Things (IoT)-based solar monitoring 

environments. Edge AI could help process solar 

irradiance, temperature, and system health data 

locally, reducing reliance on cloud computing and 

improving real-time responsiveness [36]. This could 

be vital for rural or remote installations with limited 

connectivity. 

6.2. Federated Learning for Data Privacy 

Data privacy and sharing concerns remain a 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 09 September 2025 

Page No: 3752-3761 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0545 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

3758 

 

significant barrier to training large-scale, generalized 

AI models. Federated learning allows multiple solar 

farms to collaboratively train a shared AI model 

without exchanging raw data. This could lead to 

more robust, globally applicable models while 

protecting proprietary or sensitive data [37]. 

6.3. Transfer Learning and Domain 

Adaptation 

Many AI models struggle with geographical 

generalization—a model trained in Germany may not 

perform well in India due to differing climate 

patterns. Future research should focus on transfer 

learning and domain adaptation techniques that allow 

pretrained models to adapt quickly to new 

geographic or climatic regions with minimal 

additional training [38]. 

6.4. Explainable AI and Ethical AI 

Despite their accuracy, AI models are often criticized 

as “black boxes.” The push for explainable AI (XAI) 

aims to improve transparency by revealing how and 

why a model makes certain decisions. This is 

essential for regulatory compliance, operator trust, 

and system debugging [39]. Ethics also matter—

models must be audited to prevent bias, ensure 

safety, and align with sustainability goals. 

6.5. Hybrid Energy Systems Optimization 

The future of solar energy lies not in isolation, but in 

its integration with hybrid renewable energy systems 

(e.g., solar-wind-battery). AI can play a key role in 

orchestrating such complex systems by predicting 

supply and demand, managing storage, and 

optimizing load balancing across energy sources 

[40]. 

6.6. Standardization and Benchmarking 

Finally, the research community needs standardized 

datasets, evaluation protocols, and benchmarking 

platforms to fairly compare the performance of 

various AI approaches. Open-source initiatives and 

collaborative research efforts are necessary to create 

such shared resources [41]. 

Conclusion 

In the past decade, artificial intelligence has 

transitioned from a theoretical novelty to a practical 

necessity in optimizing solar energy systems. From 

basic irradiance forecasting to real-time fault 

detection and intelligent control, AI models, 

especially deep learning and ensemble techniques—

have significantly enhanced the reliability, 

efficiency, and scalability of solar technologies. 

However, as demonstrated throughout this review, 

challenges remain. Model generalizability, 

interpretability, computational efficiency, and data 

quality are recurrent themes that researchers must 

continue to address. Moreover, the shift towards 

Explainable AI, Edge Computing, and Hybrid 

Systems Integration is paving the way for the next 

generation of smart solar infrastructures. 

Ultimately, the synergy between solar energy and AI 

holds tremendous potential to accelerate the global 

transition toward clean, resilient, and intelligent 

energy ecosystems. Continued interdisciplinary 

collaboration between computer scientists, 

engineers, and environmental scientists will be 

essential to realizing this potential. 
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