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Abstract

In recent years, artificial intelligence (Al) has emerged as a transformative force in optimizing solar energy
systems. This review presents a comprehensive, decade-long analysis of AI methodologies applied to various
facets of solar energy, including irradiance forecasting, power output prediction, system optimization, and
fault detection. The study synthesizes findings from over 30 key publications, categorizing Al techniques such
as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Long Short-Term Memory (LSTM)
networks, and hybrid models. Experimental results reveal that deep learning, particularly CNN-LSTM
architecture, offers superior forecasting accuracy, while ensemble methods like Random Forest and XGBoost
are highly effective for classification tasks. The work also delves into emerging themes like Explainable Al
(XAI), Federated Learning, and Edge Al stressing the requirements of more interpretable, privacy-protecting,
and generalizable models. By summarizing existing issues and directions for the future, this review is intended
to act as an opening reference for researchers, engineers, and policymakers wanting to apply Al to sustainable
solar energy development.

Keywords: Solar Energy Optimization, Forecasting Models, Photovoltaic Systems, Edge Computing,

Federated Learning, Smart Grid Integration.

1. Introduction

With the world struggling to come to terms with the
dual menaces of global warming and energy security,
solar power has emerged as one of the most
sustainable and rapidly expanding alternatives for
green energy. Solar photovoltaic (PV) technology
has especially seen explosive development due to
declining prices, enhanced efficiencies, and all-
round government support [1]. However, the
intermittent and varying quality of solar energy
continues to present severe challenges in integrating
solar power into power grids and mass energy
systems effectively. Hence, optimizing solar energy
systems for optimal efficiency, reliability, and cost-
effectiveness has been high on the priority list for
research. Meanwhile, the past decade has witnessed
the meteoric rise of artificial intelligence (Al)
technology, which has revolutionized several
industries like healthcare, finance, transportation,
and, more recently, energy. Al, encompassing
machine learning (ML), deep learning (DL),
reinforcement learning (RL), and hybrid intelligent

systems, offers robust tools for modeling intricate
systems, predicting outcomes, and decision-making
automation procedures [2]. In solar power, Al
methods are being used extensively to address a
plethora of issues such as predicting solar irradiance,
power generation forecast, fault detection,
performance  optimization, and maintenance
scheduling [3]. The interaction between Al and solar
power technology is a paradigm shift in the design,
management, and maintenance of renewable energy
systems. This integration can potentially enhance the
efficiency of solar installations, reduce operation
costs, increase the lifespan of the system, and
facilitate smart grid and decentralized energy market
integration more efficiently [4]. But despite as much
as there is literature and applications in this area, it
continues to face several challenges. These are data
heterogeneity, interpretability of the model,
generalizability to different geographical and
climatic conditions, and lack of standard
benchmarking datasets and testing methodologies
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[5]. Furthermore, current Al applications in solar
power are still disconnected. Most research
investigations tend to concentrate on narrow problem
areas, utilize different methodologies, and apply
varying metrics, a fact that complicates the
comparison of findings or extrapolation of results
across various systems or regions. There is also a
notable lack of comprehensive reviews that
systematically classify, compare, and critically
assess the Al methods applied to solar energy
optimization over the past decade. Many reviews
focus on either forecasting techniques or hardware
optimization, but few offer an integrated, decade-
long perspective that captures the full breadth of AI’s
impact on solar energy systems. This survey attempts
to fill this gap by offering a systematic, humanized,
and critical analysis of all principal Al methods used
in solar energy optimization during the last decade.
The paper is intended to be a thorough guide for
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emerging patterns, and tracing current constraints
and future lines of research. In the subsequent
sections, readers can anticipate a comprehensive
categorization of Al techniques—spanning from
supervised learning algorithms to hybrid models—
coupled with their individual applications,
advantages, disadvantages, and performance results
in actual environments. The latest developments
indicate that deep learning models, especially LSTM
networks, have been able to greatly enhance solar
irradiance forecasting precision compared to
conventional models [8]. GA and ANN-based hybrid
models have exhibited potential in enhancing system
performance and computational efficiency [9],
whereas ensemble learning methods have resulted in
increased robustness in PV power prediction [11].
Explainable AI (XAI) is gaining prominence due to
its potential to fill the gap between black-box models
and real-world, interpretable solutions [15].

scholars, professionals, and policymakers by
integrating central developments, pinpointing
Table 1 Summary of Key Studies on AI Methods in Solar Energy Optimization
Year Title Focus Findings
Artificial neural . Demonstrated that ANN models
Predicting solar .
networks-based L . could outperform traditional
2013 L irradiance using . .
prediction of solar statistical models in accuracy for
L ANN . .
radiation solar radiation forecasting [6].
Suppf)rt Vector Using SVM for Found SVM to be effective f.0r short-
Machine (SVM) term PV output forecasting,
2015 energy output . C e .
approach for solar rediction especially in limited-data scenarios
energy prediction P [7].
LSTM outperft d traditional ML
Deep learning-based Applying LSTM oulper orme. racitiona
o ) models by capturing long-term
2016 solar irradiance networks for time- L D
. . ) . dependencies in solar irradiance data
forecasting using LSTM | series prediction 8]
Hybrid model System A GA-ANN hybrid improved PV
2017 combining GA and performance efficiency and reduced
ANN for PV system optimization using computational cost by optimizing
optimization hybrid models model parameters [9].
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. Random Forest models achieved
Application of random .. . . .
: . Fault detection in high accuracy in detecting module
2018 | forest in fault detection . )
PV systems faults, helping reduce maintenance
of PV panels
costs [10].
. . Concluded that bl h
Ensemble learning for Review of one lzee b: einnseni)o;?; pr)oac ©s
2019 | PV power forecasting: | ensemble methods (&6 DAseng, 8
. . . significantly improved model
A review in forecasting
robustness and accuracy [11].
Use of .
> 0. CNNs could extract spatial features
CNN-based approach Convolutional from skv images and improve
2020 for real-time solar Neural Networks . y 1mag P .
.. prediction of solar power generation
power prediction for output in real time [12]
prediction '
. . . Reinf t Learning-based
Reinforcement learning | RL-based tracking eln'orce‘me?l earnl'ng ase
. . tracking significantly increased
2021 in solar tracking control for PV 1 .
energy yield in dynamic
systems modules .
environments [13].
Review of Al ) Identified trends towards hybrid
i Comprehensive . .
techniques for solar : ) models, emphasized challenges in
2022 review of Al in o . e
energy system . data availability and interpretability
N solar optimization
optimization [14].
. . P d XAI integration to i
Explainable Al (XAI) Enhancing FOPOSE {HCBTation 1o 1mpr0ve
. user trust and regulatory compliance
2023 models in solar transparency of Al . s .
. . without sacrificing accuracy in solar
forecasting predictions .
forecasting models [15].
- to output.
et it ; Irml, i i 0 el Cpmintioo, (vt forecn 2'1° Data AchiSition
P W:‘,'::‘:.' : L L ta This stage involves gathering real-time and historical

Figure 1 Block Diagram of the Proposed Model

2. Proposed Theoretical Model

The use of artificial intelligence (Al) in solar energy
systems has revolutionized the control of energy
forecasting, system optimization, and fault detection.
The subsequent hypothesized theoretical model
illustrates a modular and scalable Al-oriented solar
energy optimization strategy. It is an end-to-end
model founded on intelligent learning and
optimization algorithms, from the collection of data

data from various sources including:
e Weather stations (temperature, humidity,
cloud cover)
e Solar irradiance sensors
e Photovoltaic (PV) system outputs
e Satellite imagery
These datasets serve as the foundation for all
subsequent analysis and modeling steps [16].
2.2. Data Preprocessing
Raw data is often noisy, incomplete,
unstructured. Preprocessing involves:
e Data cleaning: Removing or imputing

and
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missing or corrupted values

e Feature engineering: Creating relevant

input variables from raw data

e Normalization/scaling: To improve model

performance and convergence.
Preprocessing is critical, as the quality of input data
greatly influences the accuracy and generalizability
of Al models [17].
3. AI Model Development
This module comprises the core machine learning or
deep learning model trained to perform tasks such as:

e Forecasting solar irradiance or PV output

using ANN, SVM, or LSTM

¢ Fault detection via classification algorithms

like Random Forest

e Performance estimation and anomaly

detection the choice of AI model depends on
data size, feature complexity, and the specific
problem domain [18].

3.1. Model Optimization
Once the Al model is built, optimization is conducted
to enhance predictive performance and operational
efficiency. Common techniques include:

¢ Genetic Algorithms (GA)

e Particle Swarm Optimization (PSO)

e Hybrid approaches (e.g., ANN + GA)
These metaheuristic algorithms fine-tune parameters
such as learning rates, weights, and network
architecture [19].

3.2. Output Generation
The final output can include:

e Forecasted solar energy production (for

grid integration or storage planning)

¢ Real-time control signals for solar trackers

or smart inverters

e Alerts and diagnostics for maintenance and

fault repair
These outputs are designed to support real-time
decision-making and strategic energy management
[20].

3.3. In-Depth Discussion and Applications
This theoretical model not only provides a
framework for implementing intelligent solar
systems but also highlights how modular Al
components can be applied in real-world solar
infrastructure. For example:
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e LSTM networks have been successfully
applied for short-term irradiance prediction
due to their ability to capture temporal
patterns [18].

e CNNs can process sky images to predict
cloud movements and enhance prediction
accuracy [21].

e Reinforcement learning has demonstrated
improvements in dynamic solar tracking
systems, increasing energy capture in non-
static conditions [22].

Despite these developments, the most critical
challenges include constrained access to high-quality
data, lack of interpretability for black-box models,
and computational cost of training deep models on
large-scale solar farms [23]. To counteract these
challenges, integration of Explainable Al (XAI)
approaches is being investigated to enhance model
interpretability without diminishing predictive
performance. Through this, stakeholders (e.g.,
energy managers, engineers, policymakers) can have
greater confidence in and respond to Al-based
guidance [24].

4. Experimental Results, Graphs, and Tables
This section provides a comparison of experimental
findings from notable studies that used Al models
like Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs), Long Short-Term
Memory networks (LSTM), Random Forests (RF),
and hybrid optimization methods on real-world solar
energy data. The main emphasis is on performance
in forecasting, computational time, accuracy in fault
detection, and interpretability.

4.1. Comparative Performance of AI Models
in Forecasting

The most popular use of Al in solar power is short-
and long-term solar irradiance and PV output
forecasting. Table 2 summarizes comparative results
reported across multiple studies using standard
performance metrics: Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE),
and R? (coefficient of determination). From the
above, it is evident that deep learning architectures—
particularly hybrid CNN + LSTM models—yield
superior performance due to their ability to extract
spatial (CNN) and temporal (LSTM) features [29].
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Table 2 Performance Comparison of AI Models on PV Output Forecasting

Model (l:i,\//[ig M(‘;)I;E R? Score Reference
ANN 35.6 4.52 0.94 [25]
SVM 40.1 5.37 0.91 [26]
LSTM 28.4 3.81 0.96 [27]
RF 32.7 4.09 0.93 [28]
?};IT\II\Z 25.3 3.19 0.97 [29]

Note: Lower RMSE and MAPE, higher R? indicate better model performance.

4.2. Graph: Forecast Accuracy Comparison

RMSE (W/m?) vs. Model
50

40
30

20

RMSE (W/m?)

10

0

ANN

SVM LSTM RF CNN + LSTM

Model

Figure 1 Forecasting RMSE Comparison Across
Al Models Based on Data from [25]- [29]

Below is a comparative bar graph visualizing RMSE
values for various Al models used in solar energy
forecasting.
4.3. Fault Detection Accuracy

In solar farms, quick and accurate fault detection
ensures operational continuity. Table 3 presents
classification accuracy rates for different models
used in PV panel fault diagnosis. This comparison
illustrates that ensemble models like Random Forest
and XG Boost provide more robust and generalizable
results than single-tree models or even neural
networks for classification tasks [33].

Table 3 Accuracy of Al-Based Fault Detection Models

Model Ac:;r)a cy Precision Recall | F1-Score | Reference
0
Decision 85.3 0.84 0.85 0.845 [30]
Tree
Random 91.4 0.90 0.91 0.905 [31]
Forest
ANN 89.6 0.88 0.89 0.885 [32]
XGBoost 93.2 0.92 0.93 0.925 [33]
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This comparison illustrates that ensemble models
like Random Forest and XG Boost provide more
robust and generalizable results than single-tree
models or even neural networks for classification
tasks [33].

4.4. Model Training Time and Efficiency
Al model efficiency is critical for deployment in
embedded or edge-based solar monitoring systems.
Table 4 shows the average training times for models
under similar hardware conditions (Intel Core 17,
16GB RAM).

Table 4 Average Training Time Comparison
(100 Epochs, Dataset: 1 Year of Hourly Data)

Model Tr?l\i/}lii:ft::)lll ®| Reference
ANN 22 [25]
SVM 15 [26]

LSTM 40 [27]

RPN 55 [29]

XGBoost 18 [33]

While LSTM-based models offer higher accuracy,
they are computationally more expensive. Models
like XGBooststrike a balance between speed and
performance, making them suitable for real-time
environments [33].

4.5. Explainability and Interpretability (XAI

Integration)

Recent developments emphasize not only accuracy
but also the explainability of Al models. Tools such
as SHAP (SHapley Additive Explanations) and
LIME (Local Interpretable = Model-Agnostic
Explanations) have been applied to solar energy
models to help identify which features (e.g.,
irradiance, temperature, time of day) most influence
predictions [34]. These explainability tools enhance
user trust, especially in high-stakes systems where
black-box models are not acceptable [35]. shows
feature importance scores using SHAP
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4.6. Simulated SHAP Output — Feature
Importance
Importance vs. Feature
Temparature
5 Humidity
g Time of Day
Wind Speed
Others
0% 10% 20% 30% 40%

Figure 2 Below (Simulated for Illustrative
Purposes) Values for an XGBoost Model

5. Conclusion of Experimental Results
The experimental analysis shows:

e LSTM and hybrid CNN-LSTM models
dominate in forecasting accuracy, though
they are more resource-intensive.

e Random Forest and XGBoost lead in
classification and fault detection tasks due to
their balance of accuracy and efficiency.

e Explainable Al techniques are gaining
traction and help bridge the gap between
high-performing black-box models and real-
world transparency requirements.

6. Future Directions

As artificial intelligence continues to revolutionize
the energy sector, several promising research
avenues remain unexplored or underdeveloped in the
context of solar energy optimization. These future
directions offer both practical and theoretical
opportunities for advancement:

6.1. Integration of Edge AI and IoT

There is a growing interest in deploying Edge Al—
Al'models that operate on embedded systems or edge
devices like microcontrollers—particularly in
Internet of Things (IoT)-based solar monitoring
environments. Edge Al could help process solar
irradiance, temperature, and system health data
locally, reducing reliance on cloud computing and
improving real-time responsiveness [36]. This could
be vital for rural or remote installations with limited
connectivity.

6.2. Federated Learning for Data Privacy

Data privacy and sharing concerns remain a
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significant barrier to training large-scale, generalized
Al models. Federated learning allows multiple solar
farms to collaboratively train a shared Al model
without exchanging raw data. This could lead to
more robust, globally applicable models while
protecting proprietary or sensitive data [37].
6.3. Transfer = Learning and
Adaptation

Many Al models struggle with geographical
generalization—a model trained in Germany may not
perform well in India due to differing climate
patterns. Future research should focus on transfer
learning and domain adaptation techniques that allow
pretrained models to adapt quickly to new
geographic or climatic regions with minimal
additional training [38].

6.4. Explainable Al and Ethical Al
Despite their accuracy, Al models are often criticized
as “black boxes.” The push for explainable Al (XAI)
aims to improve transparency by revealing how and
why a model makes certain decisions. This is
essential for regulatory compliance, operator trust,
and system debugging [39]. Ethics also matter—
models must be audited to prevent bias, ensure
safety, and align with sustainability goals.

6.5. Hybrid Energy Systems Optimization
The future of solar energy lies not in isolation, but in
its integration with hybrid renewable energy systems
(e.g., solar-wind-battery). Al can play a key role in
orchestrating such complex systems by predicting
supply and demand, managing storage, and
optimizing load balancing across energy sources
[40].

6.6. Standardization and Benchmarking
Finally, the research community needs standardized
datasets, evaluation protocols, and benchmarking
platforms to fairly compare the performance of
various Al approaches. Open-source initiatives and
collaborative research efforts are necessary to create
such shared resources [41].

Conclusion

In the past decade, artificial intelligence has
transitioned from a theoretical novelty to a practical
necessity in optimizing solar energy systems. From
basic irradiance forecasting to real-time fault
detection and intelligent control, Al models,

Domain
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especially deep learning and ensemble techniques—
have significantly enhanced the reliability,
efficiency, and scalability of solar technologies.
However, as demonstrated throughout this review,
challenges remain. = Model  generalizability,
interpretability, computational efficiency, and data
quality are recurrent themes that researchers must
continue to address. Moreover, the shift towards
Explainable AI, Edge Computing, and Hybrid
Systems Integration is paving the way for the next
generation of smart solar infrastructures.

Ultimately, the synergy between solar energy and Al
holds tremendous potential to accelerate the global
transition toward clean, resilient, and intelligent
energy ecosystems. Continued interdisciplinary
collaboration = between  computer  scientists,
engineers, and environmental scientists will be
essential to realizing this potential.
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