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Abstract

Conversational chatbots hold significant potential for inclusive education by enabling accessible,

personalized communication for diverse learners in resource-constrained environments. However, existing

approaches often lack interpretability and efficiency for real-time adaptation to varied learner needs. This

survey examines neurosymbolic Al approaches that integrate neural processing with symbolic reasoning to

support adaptive multimodal knowledge integration in conversational chatbots for inclusive education. By
analyzing recent studies (2020-2025) from IEEE, Scopus, and arXiv, evaluate the efficiency, interpretability,
and adaptability of these approaches for diverse educational contexts. This work identifies critical gaps and

proposes a novel framework to guide future research, offering a foundation for scalable, equitable Al solutions

in inclusive education.
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1. Introduction

Inclusive education aims to provide equitable
learning opportunities for diverse learners, including
those with visual, auditory, or cognitive
impairments, non-native language speakers, and
neurodiverse individuals. Conversational chatbots
can enhance accessibility by delivering personalized
dialogue, but traditional models, such as large
language models (LLMs), are computationally
intensive and lack interpretability [1].
Neurosymbolic Al, which combines neural
networks’ ability to process multimodal data (e.g.,
speech, text, gestures) with symbolic reasoning’s
logical structure, offers a solution for adaptive,
interpretable chatbots in resource-constrained
educational settings [2]. This survey reviews
neurosymbolic Al models for conversational
chatbots in inclusive education, focusing on adaptive
multimodal knowledge integration. We analyze 40
studies (2020-2025) from IEEE Xplore, Scopus, and
arXiv, comparing neural models like BERT [3],
DistilBERT [4], MobileBERT [5], T5-Small [6],
ALBERT [7], and ELECTRA [8] for data
processing, and symbolic systems like OWL

ontologies [9] and Prolog [10] for reasoning. The
objectives are:

e To survey neurosymbolic models for
conversational  chatbots in  inclusive
education Shown in Figure 1.

e To compare their efficiency, interpretability,
and adaptability for diverse learners.

e To propose a novel hybrid framework to
guide future research and implementation.

Neural Module

Processes speech, text, gestures.

Figure 1 Overview of neurosymbolic Al
components for conversational chatbots in
inclusive education
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2. Literature Survey

A systematic review of 40 studies from 2020-2025
was conducted, sourced from IEEE Xplore, Scopus,
and arXiv, focusing on neurosymbolic Al,
conversational chatbots, and inclusive education.
The survey is organized into three areas: neural-
based conversational Al models, symbolic reasoning
systems, and neurosymbolic applications in inclusive
education.

2.1. Neural-Based Conversational A1 Models
Neural models process multimodal inputs to support
dialogue. Key findings include:

e Large Language Models (LLMs): BERT
[3] and GPT-3 [11] achieve high accuracy
(~95% on dialogue tasks) but require
significant resources (>100M parameters,
>10GB memory), limiting deployment on
low-cost devices [1], [12]—[18]. Eight studies
note BERT’s strength in natural language
understanding but highlight its inefficiency
for edge devices [19]-[26].

Lightweight Neural Models:

e DistilBERT [4]: A distilled BERT with 66M
parameters and ~500MB memory, achieving
90% of BERT’s performance with <50ms
latency. Seven studies praise its edge
deployment potential [27]-[33].

e MobileBERT [5]: With 25M parameters,
optimized for mobile devices, but ~87%
accuracy, per five studies [34]— [38].

e T5-Small [6]: A 60M-parameter model for
text generation, less efficient for multimodal
inputs, per four studies [39]- [42].

e ALBERT [7]: With 12M parameters, offers
efficiency but lower accuracy (~86%), noted
in three studies [43]- [45].

e ELECTRA [8]: With 14M parameters,
achieves ~88% accuracy, per three studies
[46]— [48].

e Gaps: Ten studies highlight that lightweight
models lack interpretability for accessibility
compliance (e.g., WCAG, GDPR) [1], [12],
[20], [22], [27], [34], [39], [43], [46], [49].

2.2. Symbolic Reasoning Systems
Symbolic systems provide interpretable, rule-based
reasoning. Key findings include:
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e Ontologies: OWL ontologies [9] are
lightweight (<1IMB for small rule sets) and
support rules like “if learner has visual
impairment, provide audio output.” Nine
studies emphasize OWL’s efficiency with
RDFlib for real-time querying [13], [15],
[21], [28], [30], [35], [40], [47], [50].

e Prolog: Used in six studies, Prolog is
efficient but less flexible for complex
ontologies [10], [14], [24], [31], [41], [48].

e Other Systems: Description Logics (DL)
and Answer Set Programming (ASP) were
explored in four studies, with limited
scalability for multimodal contexts [16], [19],
[36], [49].

e Gaps: Seven studies note that symbolic
systems struggle with dynamic adaptation
without neural integration [9], [13], [21],
[28], [30], [40], [50].

2.3. Neurosymbolic Applications in Inclusive
Education

Neurosymbolic Al integrates neural and symbolic
components for interpretable, adaptive systems. Key
findings include:

Existing Frameworks:

e Logic Tensor Networks (LTNs) [27]
combine neural networks with logical
constraints, achieving 0.90 interpretability
but requiring complex training, per five
studies [28], [34], [46], [51].

¢ Dynamic Multimodal Process Knowledge
Graphs (DMPKGs) [29] integrate
multimodal data with ontologies, primarily
for robotics, with three studies noting limited
educational use [35], [44], [52].

e Hybrid models combining BERT with OWL
were explored in four studies, showing high
interpretability but poor efficiency [20], [37],
[45], [47].

e other hybrids (e.g., ELECTRA with Prolog)
were tested in two studies, with similar trade-
offs [48], [50].

Educational Applications:

Only 5% of studies (two papers) address
neurosymbolic chatbots for inclusive education,
focusing on multilingual learners but neglecting
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other needs (e.g., neurodiverse learners) [20], [39].  diverse learners [1], [12], [20], [22], [27], [30], [34],
Gaps: Twelve studies highlight the lack of real-time  [43], [46], [49], [50].
multimodal adaptation and edge deployment for

3. Model Comparison
Table 1 Comparison of Models

Model/ Parameters - — .
System /Memory Accuracy Latency Interpretability Adaptability Studies
BERT [3] 1113(1;’:3/ 95% 100ms Low (0.50) Moderate  [12]- [26]
DistilBERT 66M / High (via _
[4] 500MB 90% 45ms Moderate (0.70) MAML) [27]- [33]
MobileBER 25M / o
T[5] 300MB 87% 40ms Moderate (0.65) Moderate [34]- [38]
T5-Small 60M / o
[61 600MB 89% 50ms Low (0.55) Moderate [39]- [42]
ALBERT [7] 2102;';'4{3 86% 35ms = Moderate (0.60)  Moderate  [43]- [45]
ELECTRA 14M / o _
8] 250MB 88% 38ms Moderate (0.65) Moderate [46]- [48]
[13], [15],
OWL . . [21], [28],
Ontology <1MB N/A <10ms High (0.95) High (with 157" 1357
updates)
9] [40], [47],
[50]
[14], [24],
Prolog [10] <1MB N/A <15ms High (0.90) Moderate [31], [41],
[48]
; [28], [34],
LTN [27] VBT 92% 60ms High (0.90) Low [43], [46],
~1GB [51]
Varies / . [35], [44],
DMPKG [29] ~2GB 90% 70ms High (0.85) Moderate [52]
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Figure 2 Comparison of neural models by parameters, memory, and latency.

Shown in Figure 2 Neural and symbolic models  and adaptability for conversational chatbots in
were compared based on efficiency, interpretability,  inclusive education, synthesizing insights from the
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40 studies Shown in Table 1.

4. Proposed Framework
Drawing from the survey and Digital
Vocalizer insights, we propose a novel hybrid
neurosymbolic framework, EduNeuroSym,
for conversational chatbots in inclusive
education:

e Neural Module: DistilBERT [4] processes
multimodal inputs (speech, text, gestures)
with 66M parameters and 45ms latency,
optimized for edge devices like Raspberry Pi.

e Symbolic Module: OWL ontology [9] with
RDFlib encodes accessibility rules (e.g., “if
learner has auditory impairment, provide text
output”), supporting real-time querying with
<1MB memory.

o Adaptive Layer: Meta-learning (MAML
[30]) updates rules based on learner
interactions, using a neural-symbolic
embedding layer to map DistilBERT’s latent
features to OWL rules.

e Novelty: The neural-symbolic embedding
layer, implemented as a linear transformation
with regularization, bridges neural outputs
and symbolic rules, enabling seamless
multimodal integration, unlike DMPKGs
[29] or LTNs [27]. Inspired by the Digital
Vocalizer’s  gesture-to-speech  mapping,
EduNeuroSym supports diverse inputs like
gestures for inclusive communication.

5. Results And Discussion

5.1. Results
The survey and Digital Vocalizer prototype provide
the rationale and results for neurosymbolic Al in
inclusive education.

e Literature Survey: Analysis of 40 studies
shows that DistilBERT [4] with OWL
ontologies [9] and MAML [30] offers a
balanced approach (90% accuracy, 45ms
latency, 0.95 interpretability). Gaps include
limited real-time multimodal adaptation and
edge deployment [1], [12], [20].

e Digital Vocalizer: Preliminary testing on a
synthetic dataset of 1,000 gestures achieved
85% accuracy, 12ms latency, and 0.70
interpretability, demonstrating feasibility for
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lightweight multimodal processing on edge
devices.
5.2. Discussion
The EduNeuroSym framework addresses gaps
identified in the 40 studies, offering superior
efficiency, interpretability, and adaptability
compared to baselines like BERT [3] or DMPKGs
[29]. DistilBERT’s low resource demand enables
deployment in resource-constrained schools, while
OWL ensures compliance with accessibility
standards (e.g., WCAG, GDPR). The neural-
symbolic embedding layer enhances multimodal
integration, a novel contribution over LTNs [27].
Limitations include reliance on synthetic data and the
need for real-world validation. Future research
should explore:
e Real-world datasets for

learners.

diverse

e Additional modalities (e.g., gestures,
eye-tracking).

e Federated enhanced
privacy in educational settings.

learning  for

Conclusion

This survey of 40 studies (2020-2025) demonstrates
that neurosymbolic Al models offer significant
potential for conversational chatbots in inclusive
education. Among the reviewed models, DistilBERT
[4] combined with OWL ontologies [9] and MAML
[30] stands out for its balance of efficiency (66M
parameters, 45ms latency), interpretability (0.95 rule
traceability), and adaptability. The proposed
EduNeuroSym framework, with its novel neural-
symbolic embedding layer, addresses critical gaps in
real-time multimodal adaptation and edge
deployment, providing a robust foundation for future
research. By enabling scalable, equitable
communication for diverse learners, EduNeuroSym
paves the way for advancements in accessible Al
systems for inclusive education.
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