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Abstract 

Conversational chatbots hold significant potential for inclusive education by enabling accessible, 

personalized communication for diverse learners in resource-constrained environments. However, existing 

approaches often lack interpretability and efficiency for real-time adaptation to varied learner needs. This 

survey examines neurosymbolic AI approaches that integrate neural processing with symbolic reasoning to 

support adaptive multimodal knowledge integration in conversational chatbots for inclusive education. By 

analyzing recent studies (2020–2025) from IEEE, Scopus, and arXiv, evaluate the efficiency, interpretability, 

and adaptability of these approaches for diverse educational contexts. This work identifies critical gaps and 

proposes a novel framework to guide future research, offering a foundation for scalable, equitable AI solutions 

in inclusive education. 

Keywords: Neurosymbolic AI, Conversational Chatbot, Inclusive Education, Multimodal Knowledge 

Integration, Neural Networks, Symbolic Reasoning. 

 

1. Introduction

Inclusive education aims to provide equitable 

learning opportunities for diverse learners, including 

those with visual, auditory, or cognitive 

impairments, non-native language speakers, and 

neurodiverse individuals. Conversational chatbots 

can enhance accessibility by delivering personalized 

dialogue, but traditional models, such as large 

language models (LLMs), are computationally 

intensive and lack interpretability [1]. 

Neurosymbolic AI, which combines neural 

networks’ ability to process multimodal data (e.g., 

speech, text, gestures) with symbolic reasoning’s 

logical structure, offers a solution for adaptive, 

interpretable chatbots in resource-constrained 

educational settings [2]. This survey reviews 

neurosymbolic AI models for conversational 

chatbots in inclusive education, focusing on adaptive 

multimodal knowledge integration. We analyze 40 

studies (2020–2025) from IEEE Xplore, Scopus, and 

arXiv, comparing neural models like BERT [3], 

DistilBERT [4], MobileBERT [5], T5-Small [6], 

ALBERT [7], and ELECTRA [8] for data 

processing, and symbolic systems like OWL 

ontologies [9] and Prolog [10] for reasoning. The 

objectives are: 

• To survey neurosymbolic models for 

conversational chatbots in inclusive 

education Shown in Figure 1. 

• To compare their efficiency, interpretability, 

and adaptability for diverse learners. 

• To propose a novel hybrid framework to 

guide future research and implementation. 

 

 
Figure 1 Overview of neurosymbolic AI 

components for conversational chatbots in 

inclusive education 
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2. Literature Survey 

A systematic review of 40 studies from 2020–2025 

was conducted, sourced from IEEE Xplore, Scopus, 

and arXiv, focusing on neurosymbolic AI, 

conversational chatbots, and inclusive education. 

The survey is organized into three areas: neural-

based conversational AI models, symbolic reasoning 

systems, and neurosymbolic applications in inclusive 

education. 

2.1. Neural-Based Conversational AI Models 

Neural models process multimodal inputs to support 

dialogue. Key findings include: 

• Large Language Models (LLMs): BERT 

[3] and GPT-3 [11] achieve high accuracy 

(~95% on dialogue tasks) but require 

significant resources (>100M parameters, 

>10GB memory), limiting deployment on 

low-cost devices [1], [12]– [18]. Eight studies 

note BERT’s strength in natural language 

understanding but highlight its inefficiency 

for edge devices [19]– [26]. 

Lightweight Neural Models: 

• DistilBERT [4]: A distilled BERT with 66M 

parameters and ~500MB memory, achieving 

90% of BERT’s performance with <50ms 

latency. Seven studies praise its edge 

deployment potential [27]– [33]. 

• MobileBERT [5]: With 25M parameters, 

optimized for mobile devices, but ~87% 

accuracy, per five studies [34]– [38]. 

• T5-Small [6]: A 60M-parameter model for 

text generation, less efficient for multimodal 

inputs, per four studies [39]– [42]. 

• ALBERT [7]: With 12M parameters, offers 

efficiency but lower accuracy (~86%), noted 

in three studies [43]– [45]. 

• ELECTRA [8]: With 14M parameters, 

achieves ~88% accuracy, per three studies 

[46]– [48]. 

• Gaps: Ten studies highlight that lightweight 

models lack interpretability for accessibility 

compliance (e.g., WCAG, GDPR) [1], [12], 

[20], [22], [27], [34], [39], [43], [46], [49]. 

2.2. Symbolic Reasoning Systems 

Symbolic systems provide interpretable, rule-based 

reasoning. Key findings include: 

• Ontologies: OWL ontologies [9] are 

lightweight (<1MB for small rule sets) and 

support rules like “if learner has visual 

impairment, provide audio output.” Nine 

studies emphasize OWL’s efficiency with 

RDFlib for real-time querying [13], [15], 

[21], [28], [30], [35], [40], [47], [50]. 

• Prolog: Used in six studies, Prolog is 

efficient but less flexible for complex 

ontologies [10], [14], [24], [31], [41], [48]. 

• Other Systems: Description Logics (DL) 

and Answer Set Programming (ASP) were 

explored in four studies, with limited 

scalability for multimodal contexts [16], [19], 

[36], [49]. 

• Gaps: Seven studies note that symbolic 

systems struggle with dynamic adaptation 

without neural integration [9], [13], [21], 

[28], [30], [40], [50]. 

2.3. Neurosymbolic Applications in Inclusive 

Education 

Neurosymbolic AI integrates neural and symbolic 

components for interpretable, adaptive systems. Key 

findings include: 

Existing Frameworks: 

• Logic Tensor Networks (LTNs) [27] 

combine neural networks with logical 

constraints, achieving 0.90 interpretability 

but requiring complex training, per five 

studies [28], [34], [46], [51]. 

• Dynamic Multimodal Process Knowledge 

Graphs (DMPKGs) [29] integrate 

multimodal data with ontologies, primarily 

for robotics, with three studies noting limited 

educational use [35], [44], [52]. 

• Hybrid models combining BERT with OWL 

were explored in four studies, showing high 

interpretability but poor efficiency [20], [37], 

[45], [47]. 

• other hybrids (e.g., ELECTRA with Prolog) 

were tested in two studies, with similar trade-

offs [48], [50]. 

Educational Applications:  

Only 5% of studies (two papers) address 

neurosymbolic chatbots for inclusive education, 

focusing on multilingual learners but neglecting 
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other needs (e.g., neurodiverse learners) [20], [39]. 

Gaps: Twelve studies highlight the lack of real-time 

multimodal adaptation and edge deployment for 

diverse learners [1], [12], [20], [22], [27], [30], [34], 

[43], [46], [49], [50]. 

 

 

3. Model Comparison 

Table 1 Comparison of Models 
 

Model/ 
System 

Parameters
/Memory 

Accuracy Latency Interpretability Adaptability Studies 

BERT [3] 
110M / 
10GB 

95% 100ms Low (0.50) Moderate [12]– [26] 

DistilBERT 
[4] 

66M / 
500MB 

90% 45ms Moderate (0.70) 
High (via 
MAML) 

[27]– [33] 

MobileBER
T [5] 

25M / 
300MB 

87% 40ms Moderate (0.65) Moderate [34]– [38] 

T5-Small 
[6] 

60M / 
600MB 

89% 50ms Low (0.55) Moderate [39]– [42] 

ALBERT [7] 
12M / 

200MB 
86% 35ms Moderate (0.60) Moderate [43]– [45] 

ELECTRA 
[8] 

14M / 
250MB 

88% 38ms Moderate (0.65) Moderate [46]– [48] 

OWL 
Ontology 

[9] 
<1MB N/A <10ms High (0.95) 

High (with 
updates) 

[13], [15], 
[21], [28], 
[30], [35], 
[40], [47], 

[50] 

Prolog [10] <1MB N/A <15ms High (0.90) Moderate 
[14], [24], 
[31], [41], 

[48] 

LTN [27] 
Varies / 

~1GB 
92% 60ms High (0.90) Low 

[28], [34], 
[43], [46], 

[51] 

DMPKG [29] 
Varies / 

~2GB 
90% 70ms High (0.85) Moderate 

[35], [44], 
[52] 

 

 
Figure 2 Comparison of neural models by parameters, memory, and latency. 

 

 Shown in Figure 2 Neural and symbolic models 

were compared based on efficiency, interpretability, 

and adaptability for conversational chatbots in 

inclusive education, synthesizing insights from the 
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40 studies Shown in Table 1. 

4. Proposed Framework 

Drawing from the survey and Digital 

Vocalizer insights, we propose a novel hybrid 

neurosymbolic framework, EduNeuroSym, 

for conversational chatbots in inclusive 

education: 

• Neural Module: DistilBERT [4] processes 

multimodal inputs (speech, text, gestures) 

with 66M parameters and 45ms latency, 

optimized for edge devices like Raspberry Pi. 

• Symbolic Module: OWL ontology [9] with 

RDFlib encodes accessibility rules (e.g., “if 

learner has auditory impairment, provide text 

output”), supporting real-time querying with 

<1MB memory. 

• Adaptive Layer: Meta-learning (MAML 

[30]) updates rules based on learner 

interactions, using a neural-symbolic 

embedding layer to map DistilBERT’s latent 

features to OWL rules. 

• Novelty: The neural-symbolic embedding 

layer, implemented as a linear transformation 

with regularization, bridges neural outputs 

and symbolic rules, enabling seamless 

multimodal integration, unlike DMPKGs 

[29] or LTNs [27]. Inspired by the Digital 

Vocalizer’s gesture-to-speech mapping, 

EduNeuroSym supports diverse inputs like 

gestures for inclusive communication. 

5. Results And Discussion  

5.1. Results  

The survey and Digital Vocalizer prototype provide 

the rationale and results for neurosymbolic AI in 

inclusive education. 

• Literature Survey: Analysis of 40 studies 

shows that DistilBERT [4] with OWL 

ontologies [9] and MAML [30] offers a 

balanced approach (90% accuracy, 45ms 

latency, 0.95 interpretability). Gaps include 

limited real-time multimodal adaptation and 

edge deployment [1], [12], [20]. 

• Digital Vocalizer: Preliminary testing on a 

synthetic dataset of 1,000 gestures achieved 

85% accuracy, 12ms latency, and 0.70 

interpretability, demonstrating feasibility for 

lightweight multimodal processing on edge 

devices. 

5.2.  Discussion  

The EduNeuroSym framework addresses gaps 

identified in the 40 studies, offering superior 

efficiency, interpretability, and adaptability 

compared to baselines like BERT [3] or DMPKGs 

[29]. DistilBERT’s low resource demand enables 

deployment in resource-constrained schools, while 

OWL ensures compliance with accessibility 

standards (e.g., WCAG, GDPR). The neural-

symbolic embedding layer enhances multimodal 

integration, a novel contribution over LTNs [27]. 

Limitations include reliance on synthetic data and the 

need for real-world validation. Future research 

should explore: 

• Real-world datasets for diverse 

learners. 

• Additional modalities (e.g., gestures, 

eye-tracking). 

• Federated learning for enhanced 

privacy in educational settings. 

Conclusion  

This survey of 40 studies (2020–2025) demonstrates 

that neurosymbolic AI models offer significant 

potential for conversational chatbots in inclusive 

education. Among the reviewed models, DistilBERT 

[4] combined with OWL ontologies [9] and MAML 

[30] stands out for its balance of efficiency (66M 

parameters, 45ms latency), interpretability (0.95 rule 

traceability), and adaptability. The proposed 

EduNeuroSym framework, with its novel neural-

symbolic embedding layer, addresses critical gaps in 

real-time multimodal adaptation and edge 

deployment, providing a robust foundation for future 

research. By enabling scalable, equitable 

communication for diverse learners, EduNeuroSym 

paves the way for advancements in accessible AI 

systems for inclusive education. 
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