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Abstract

Artificial Intelligence (Al) has seen rapid evolution over the past decade, significantly impacting various
sectors, particularly healthcare. One of its most transformative applications is in medical imaging, where Al
models have shown promise in detecting and classifying diseases from X-rays, MRIs, and CT scans. However,
challenges such as limited expert availability, diagnostic delays, and interpretability issues persist, especially
in low-resource settings. To address these gaps, this study proposes a cloud-deployable diagnostic support
system that integrates deep learning-based image analysis with Google’s Gemini large language model (LLM)
to provide accurate, explainable medical image interpretations. The system, built using Streamlit, allows users
to upload medical images, receive visual heatmaps and textual diagnostic summaries, and download complete
reports. Experimental evaluation using annotated datasets demonstrates high accuracy in anomaly detection
and strong alignment with expert diagnoses, highlighting the tool’s potential as a decision-support aid for
clinicians.

Keywords: Artificial Intelligence, Medical Imaging, Deep Learning, Diagnosis, Large Language Models,

Gemini API, Streamlit, Healthcare Al

1. Introduction

Artificial Intelligence (Al) has emerged as a
transformative force in the healthcare domain,
particularly in the field of diagnostic imaging. Over
the last decade, the application of deep learning
algorithms has shown remarkable potential in
automating the detection and classification of
medical conditions from imaging data. Traditional
diagnostic practices rely heavily on the expertise of
radiologists to interpret complex visuals such as X-
rays, Magnetic Resonance Imaging (MRI), and
Computed Tomography (CT) scans. While effective,
this manual process is time-consuming, subject to
human error, and often unavailable in remote or
underserved areas. The increasing volume of medical
imaging data further burdens existing systems,
making automation not just a convenience but a
necessity. Despite the progress in Al-driven medical
image analysis, many existing solutions struggle with
limitations related to interpretability, transparency,
and adaptability to diverse clinical environments.
Most deep learning models act as "black boxes,"
offering predictions without explaining the reasoning

behind them. This lack of clarity is a major barrier to
clinical adoption, as healthcare professionals require
not only accurate results but also understandable
insights to trust and validate Al recommendations.
Additionally, many current systems are designed for
specific conditions or datasets, limiting their
scalability and real-world applicability. This
underlines a significant gap between state-of-the-art
research models and the practical needs of frontline
clinicians. To address these challenges, this paper
presents a hybrid diagnostic platform that integrates
image analysis and language generation to produce
both visual and textual outputs. The system utilizes
convolutional neural networks (CNNs) for detecting
anomalies in uploaded medical images and Google’s
Gemini large language model (LLM) to generate
expert-like diagnostic summaries. This dual-modality
approach improves interpretability by highlighting
image regions of concern while simultaneously
providing a natural language explanation of the
findings. The application is built using Streamlit,
ensuring accessibility through a lightweight and

International Research Journal on Advanced Engineering Hub (IRJAEH)

3571


https://irjaeh.com/

IRJAEH

interactive web interface that can be deployed in
hospitals, clinics, or even low-resource settings with
basic infrastructure. The objective of this research is
to bridge the gap between high-performance Al and
clinical usability by developing a system that acts as
a diagnostic assistant rather than a replacement for
human expertise. The system supports various image
formats, applies explainable Al (XAI) methods like
heatmaps and Grad-CAM visualizations, and ensures
secure handling of patient data. By combining robust
visual analytics with interpretable text-based
feedback, the platform aligns with current trends in
responsible Al and medical device transparency. It is
also designed to be modular, allowing future
upgrades such as multi-modal inputs, integration with
electronic health records (EHRs), and support for
additional imaging types. This work is significant not
only from a technical perspective but also in its
potential for real-world healthcare impact. In regions
with limited access to specialists, the system can
provide immediate, preliminary assessments to aid
general practitioners. In high-volume urban hospitals,
it can assist in triage and documentation, reducing the
workload on radiology staff. Furthermore, the use of
large language models introduces a new layer of
human-like interaction in Al systems, making
diagnostic tools more intuitive and clinician-friendly.
As healthcare continues to move toward digital
transformation and precision medicine, Al-powered
diagnostic platforms like the one proposed in this
study will play a critical role in shaping the future of
accessible, efficient, and patient-centered care.

2. Literature Survey

[1] Singhal, K., et al., 2023 — This paper demonstrates
that large language models (LLMs) such as GPT
encode factual clinical knowledge, making them
useful for diagnosis and medical NLP tasks.
However, the authors note that LLMs may produce
inaccurate or hallucinated medical statements due to
the lack of explicit medical reasoning. [2] Lu, M. Y.,
et al., 2021 — This study explores the integration of
Al into pathology, with emphasis on practical and
real-world deployment challenges. The paper
highlights the need for large-scale clinical validation
and addresses difficulties in adapting Al to existing
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pathology workflows. [3] Chen, J., et al., 2021 — The
authors propose TransUNet, a hybrid CNN-
Transformer model that delivers high accuracy for
medical image segmentation tasks. The work
acknowledges limitations such as high computational
cost and limited interpretability compared to
traditional CNNs. [4] Gao, L., et al., 2020 — This
survey reviews deep learning techniques, datasets,
and evaluation strategies for medical image
classification. It points out that many of the surveyed
models lack real-world testing and are affected by
dataset bias. [5] Zhang, Y., et al., 2020 — The paper
introduces a deep learning model for automated
COVID-19 detection using chest CT images,
enabling rapid diagnosis. Its performance, however,
is highly dependent on dataset quality and may not
generalize across different populations. [6] Tschandl,
P., etal., 2020 — This work demonstrates that human—
computer collaboration in skin cancer recognition
improves diagnostic accuracy when Al assists
dermatologists. The study warns that excessive
reliance on Al could reduce clinician engagement and
critical review. [7] Lundervold, A. S., & Lundervold,
A., 2019 — This review provides a comprehensive
overview of deep learning models in MRI analysis,
covering both clinical and research contexts.
Limitations include the need for significant
computational resources and large amounts of
expert-labeled data. [8] Topol, E., 2019 — The author
advocates for Al-human collaboration to enhance
efficiency and outcomes in healthcare. The paper,
however, lacks detailed strategies for real-world
clinical implementation. [9] Ting, D. S. W., et al.,
2019 — This study reviews deep learning applications
in  ophthalmology, particularly for diabetic
retinopathy and glaucoma detection. Limitations
include poor performance on low-quality images and
under-represented ~ demographic ~ groups.  [10]
Johnson, A. E. W, et al., 2019 — The authors present
MIMIC-CXR, a large publicly available dataset of
labeled chest radiographs for training and
benchmarking medical imaging models. The paper
notes that annotation errors in the dataset may affect
diagnostic accuracy processed image is then analyzed
model reliability.
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3. Proposed Framework
3.1 Flow Diagram
The flowchart illustrates the complete workflow of an
Al-powered medical image diagnostic system,
beginning with the upload of a medical image such as
an X-ray, CT scan, or MRI through a user-friendly
interface. Once received, the image undergoes a pre-
processing stage involving noise reduction, contrast
enhancement, and normalization to ensure clarity,
consistency, and suitability for analysis. The
processed image is then analyzed by a CNN-based
deep learning model, which automatically extracts
important visual features and detects potential
anomalies such as tumors, lesions, or abnormal tissue
patterns. These extracted features are passed to the
Gemini Large Language Model (LLM), which
interprets the findings and generates a human-
readable diagnostic explanation that summarizes the
results and provides clinically relevant insights.
Simultaneously, the CNN produces a heatmap
visualization that highlights regions of interest,
offering a clear visual reference for the detected
anomalies. The textual and visual outputs are then
merged into a comprehensive diagnostic report and
delivered via an interactive Streamlit web interface,
allowing users to view the results, download them for
records, or store them for further evaluation. This
integrated, explainable approach not only enhances
diagnostic accuracy but also promotes transparency,
efficiency, and accessibility in modern medical
imaging workflows. (Figure 1)
3.1.1 Dataset Discussion

To ensure clinical relevance and robust Al
performance, the system is developed using publicly
available and well-annotated medical imaging
datasets. Datasets such as ChestX-ray8, MIMIC-
CXR, and the RSNA Pneumonia dataset are
employed due to their comprehensive nature and
expert-labeled disease annotations. These datasets
contain thousands of X-ray and CT images that
include abnormalities like pneumonia, lung nodules,
and COVID-19 manifestations. Each dataset is
preprocessed to standardize format, resolution, and
labeling. These diverse sources enhance the
generalization ability of the deep learning model,
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allowing it to recognize disease features across
different patient demographics and image qualities.
3.1.2 System Architecture Flow

The entire diagnostic process follows a logical, step-
wise flow that integrates image analysis and language
generation. Users begin by uploading a medical
image through a web interface. The image is
preprocessed for quality and resolution consistency,
then passed to a Convolutional Neural Network
(CNN) for feature extraction. Detected features are
interpreted in two parallel streams: one generates a
visual heatmap using Grad-CAM to highlight areas
of concern, and the other sends structured findings to
the Gemini Large Language Model (LLM) for text
generation. These visual and textual outputs are then
combined into a diagnostic report that is displayed via
the Streamlit interface. The final report can be
reviewed, stored, or downloaded as needed.
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Figure 1 Flow Diagram
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Figure 2 System Architecture Diagram

3.1.3 Step-by-Step Methodology
The system starts with a user uploading an image
supported formats include .jpg, .png, and .dcm. Next,
a  preprocessing  pipeline  handles  image
normalization, grayscale conversion, and resizing
using OpenCV and PIL. After preprocessing, a CNN
model, such as ResNet or EfficientNet, processes the
image to detect patterns and extract features. These
features are then analyzed using Grad-CAM to
generate attention-based heatmaps that visually
indicate abnormal regions. Simultaneously, the
system constructs a prompt using the extracted
diagnostic features and sends it to Google Gemini
API, which returns a natural language explanation of
the medical findings. This enables interpretability for
healthcare professionals, even those without
radiological training. The system fuses the heatmap
and the LLM-generated summary into a unified
output and presents the result in the Streamlit web
interface. Users can download the report for
documentation or share it as part of a clinical
workflow.
3.1.4 System Features
The system is designed to be modular, cloud-

deployable, and privacy-conscious. All data
processing occurs in-session, with no storage unless
explicitly permitted by the user. The interface
provides real-time feedback with results generated in
seconds. The model is trained using transfer learning,
which reduces development time and increases
performance. Visual results are generated using
Grad-CAM, ensuring transparency, while the text
generation via Gemini ensures contextual accuracy
and clinical tone. This dual-output design enhances
user trust and system explainability key aspects for
clinical deployment. Figure 2 shows System
Architecture Diagram
3.1.5 Summary

In conclusion, the proposed methodology combines
Al image analysis and LLM-driven explanation to
build a reliable diagnostic assistant for medical
professionals. It streamlines the diagnostic process
from image upload to report generation, all through
a secure and interactive interface. By supporting
visual interpretability and language-based reasoning,
the system serves as both a triaging tool and a
second-opinion generator, especially valuable in
remote or high-volume clinical environments. The
modularity also allows for future integration with
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electronic health records (EHRs), voice-based input,
and additional imaging modalities.
4. Evaluation & Result
The proposed Al-powered diagnostic system is
evaluated using a combination of quantitative
performance metrics, interpretability assessments,
and user-centered diagnostic utility validation. These
three categories reflect the goals of the project:
delivering accurate diagnosis, ensuring transparent
Al behavior, and enhancing clinical usability,
especially in resource-limited environments. Each
metric used in the evaluation plays a distinct role in
validating the solution's effectiveness in real-world
diagnostic workflows.

4.1 Diagnostic Performance Metrics

Diagnostic Performance Metrics

Accuracy Precision Recall F1-Score

Figure 3 Diagnostic Performance Metrics

4.2 Performance Metrics
To assess the classification accuracy of the Al model,
we used standard evaluation metrics including
Accuracy, Precision, Recall, and F1-Score. These
metrics help quantify the model's ability to correctly
identify abnormalities in medical images such as
pneumonia, opacity, or nodules. (Figure 3)
4.2.1 Accuracy
e Quality and size of the annotated datasets
(used for training and evaluation).
e Correct predictions from the CNN-based
anomaly detection module.
e Robustness of  the
(resolution, noise removal).
e Performance of the
integrating image and text.

preprocessing

hybrid  model
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4.2.2 Precision

e C(CNN’s ability to avoid false positives
(predicting disease when there is none).

e Quality of visual heatmaps — more precise
highlights reduce misinterpretation.

e Fine-tuning threshold of the model —
avoids flagging too many normal images as
disease.

e Clarity in LLM-generated diagnostic
summaries (avoiding overstatements).

4.2.3 Recall

e How well the CNN detects all actual
anomalies (i.e., low false negatives).

e Diversity of training images — includes
rare diseases and variations.

e Use of Grad-CAM or XAl tools to enhance
focus on relevant regions.

e Effectiveness of combining textual and
visual cues to support detection.

4.2.4 F1-Score

e Balance between Precision and Recall.

e Careful tuning of model thresholds and
training loss functions.

e Dataset balance — ensuring model learns
equally from positive and negative samples.

e System’s adaptability across different
image types (X-ray, MRI, CT) and clinical
settings.

These metrics collectively ensure that the model is
not only statistically sound but also clinically
dependable in both high and low prevalence
environments.

4.3 Model Interpretability and Transparency
Interpretability is essential for gaining the trust of
healthcare professionals. To evaluate the visual
outputs, we used Intersection over Union (IoU) and
Visual Explanation Overlap (VEO) as metrics to
compare the Al-generated heatmaps with expert-
annotated regions.

e [oU assesses how well the heatmap overlaps
with the ground truth disease region.

e VEO indicates how often visual highlights
by the model match expert attention areas.

High values in these metrics signify that the system
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does not just make accurate predictions, but also
shows the right reasons behind those predictions
reinforcing transparency and ethical Al usage in
healthcare. Figure 4 shows Model Interpretability
Metrics

Model Interpretability: loU and VEO

0.86} loU
—=— VEO
0.841
0.82t
o 0.80f
8
wn 0.781
0.76
0.74
0.72}

Case 3 Case 4 Case 5

Test Cases

Figure 4 Model Interpretability Metrics

Case 1 Casle 2

4.4 Clinical Utility and User Interaction
Feedback

Clinical Utility Evaluation
Visual-Aid Relevance

TurnaroungkTime

Ease of Use

Figure 5 Clinical Utility Evaluation

To ensure real-world usefulness, a clinical utility
score was derived from user feedback on diagnostic
usefulness, clarity of language generation, and UI
experience. This included ratings from a test group of
general physicians and radiologists on:

o Report Clarity
Visual-Aid Relevance
Diagnosis Turnaround Time
Ease of Use
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These subjective ratings, collected on a scale from 1—
10, reflect how the system performs as a decision-
support tool. Strong feedback validates the system's
alignment with the problem statement especially in
improving diagnostic access and interpretability.
Conclusion

The proposed Al-based diagnostic framework offers
an innovative and practical solution to the growing
demand for accurate, interpretable, and accessible
medical image analysis. By combining deep learning
techniques for image classification with large
language models like Google Gemini for natural
language explanation, the system addresses the core
issues identified in the problem statement: diagnostic
delays, lack of expert availability, and the need for
explainable Al in healthcare. The framework enables
users to upload medical images through a web-based
interface, automatically processes them using
convolutional neural networks (CNNs), and
generates both visual heatmaps and diagnostic
summaries in human-readable language. These dual
outputs bridge the gap between algorithmic
predictions and clinical interpretability, allowing
healthcare professionals especially in low-resource or
high-demand settings to benefit from Al-assisted
decision-making. The results obtained through
extensive evaluation using standard metrics such as
accuracy, precision, recall, and F1-score confirm the
system's  high  performance in  detecting
abnormalities. Moreover, interpretability —was
validated through visual overlap metrics like
Intersection over Union (IoU) and Visual
Explanation Overlap (VEO), ensuring that the
highlighted regions match clinical attention zones. A
clinical utility survey further demonstrated strong
usability feedback from medical professionals,
underscoring the platform’s relevance as a real-world
diagnostic assistant. These results affirm that the
framework not only performs well statistically but
also delivers meaningful, actionable insights aligned
with clinical expectations. Looking ahead, the
system can be extended to support multi-modal
diagnostic inputs, including pathology reports, lab
values, and patient history, enabling more
comprehensive and personalized diagnostics. The
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platform can also be enhanced with telemedicine
integration, allowing real-time Al-assisted remote
consultations. Additional improvements may include
support for more imaging modalities such as
ultrasound or PET scans, voice-enabled interaction
for accessibility, and integration with electronic
health records (EHRs) for seamless clinical workflow
support. To further enhance trust and regulatory
compliance, future versions may implement robust
audit trails, user authentication, and adherence to
standards like HIPAA and GDPR.
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