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Abstract

Multi-material design is a novel approach to cater the needs of nowadays aircraft, marine and automobile
applications. To meet wholesome characteristics, material laminates are articulated. The aircraft and
automobile industries are striving to overcome challenges of light weight, economical and green design of
materials. The demand of varied characteristics can be better fulfilled by multi-material laminates. Combining
similar or dissimilar alloys to customise the material is a novel technique which overcomes issues related to
versatile characteristics required in material. Fabrication of desired properties can be achieved by joining
different alloys in the form of laminated structure. Aluminium alloys that are preferred in aircraft structural
components can be replaced with multi-material Al, Mg, Cu, Ti laminates to get added benefits in terms of
cost, environmental impact and light weight design. Presently, many methods of material fabrication are
available either fusion based or solid state. The friction stir additive manufacturing, a solid state joining
method can be effectively used for lightweight multi-material design. This paper examines various fusion-
based and solid-state methods for multi-material manufacturing, with a particular emphasis on the innovative
Friction Stir Additive Manufacturing (FSAM) technique. The attention of researchers is drawn towards
challenges associated with joining dissimilar materials.
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1. Introduction

The aerospace and automotive sectors increasingly
adopt multi-material designs to meet stringent
demands for performance, efficiency, and
sustainability. Modern vehicles and aircraft require
structures that combine disparate materials, such as
lightweight alloys, advanced composites, and high-
strength materials. This integration allows for
optimized property distributions, leading to reduced
weight, enhanced fuel economy, and improved
structural integrity [1]. Modern transportation
sectors, encompassing aerospace, marine, and
automotive  industries,  persistently = pursue
advancements in performance, -efficiency, and
sustainability. A central strategy for achieving these
objectives involves the judicious integration of
diverse materials within single structural components
or systems [2]. Material combinations enable

designers to achieve specific performance targets,
including superior strength-to-weight ratios and
tailored energy absorption capabilities. Historically,
designs relied heavily on monolithic materials, often
leading to compromises between conflicting property
requirements such as strength, weight, corrosion
resistance, and cost. [3,4]. Designing multi-material
assemblies involves a holistic approach that considers
material selection, joint geometry, and manufacturing
process capabilities concurrently. Designers must
account for the anisotropic properties of composites
and the varying mechanical responses of metals
under different loading conditions. The primary
design criterion for aerospace and automotive
applications frequently involves optimizing for
lightweighting while maintaining or improving
strength, stiffness, and fatigue resistance. This
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optimization necessitates advanced computational
modelling and simulation tools to predict component
behaviour under operational loads [5]. Furthermore,
considerations for manufacturability, inspectability,
reparability, and end-of-life recycling must be
integrated early in the design phase. The judicious
combination of materials and intelligent joint design
aims to leverage the strengths of each constituent
while mitigating their individual weaknesses within
the assembly. Designers must keep eye on
intermaterial relationships and interface
interaction. [6]. There is a frequent need to enhance
performance and cost-effectiveness while combining
the advantages of different materials within a single
structure. In fact, multi-material design has been
recognized as the most effective strategy for reducing
weight, balancing costs, and minimizing
environmental impact [7-9]. Recently, there has been
a surge of interest in multi-material design to take
benefits of the desired blend of properties. The
potential for hybrid structures made from Mg/Al,
Al/Ti, and Ti/Mg is exciting, as they can offer
remarkable benefits tailored to specific needs.
However, one must acknowledge the challenges that
often emerge when joining dissimilar materials into
one unit, especially articulating Al/Mg, Al/Ti, and
Mg/Ti1 structures. Despite the sophistication of
advanced techniques like laser welding, additive
manufacturing routes, tackling these tasks remains a
formidable challenge due to the several differences in
the physical and metallurgical properties of materials
to join. Factors such as variations in crystal structure,
melting points, thermal conductivity, and coefficients
of linear thermal expansion create substantial
obstacles. To overcome these hurdles, we must
embark on a quest for innovative solutions that truly
push the boundaries of the current multi-material
design and manufacturing scenario [10-11].

2. Multimaterial Structures for Aviation,

Marine and Automobile Sector

Modern transportation relies on efficient yet eco-
friendly, reliable but low cost, lightweight but
comfortable solutions may be aerospace, surface
transport or marine. The most developing aviation
industry faces an urgent need for lightweight
structures that can lead to significantly reduced fuel
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consumption, greater payload capacities, and lower
emissions. Aircraft designers are tasked with
innovative solutions that not only meet these rigorous
demands but also ensure optimal performance and
safety [3,4]. In parallel, marine vessels require the
development of exceptionally strong and corrosion-
resistant structures, and longevity in seawater. These
vessels must be engineered to withstand harsh marine
environments while minimizing operational costs and
their ecological footprint, making efficiency a top
priority for shipbuilders [5, 6]. Meanwhile, the
automotive industry is driven by the necessity for
substantial weight reduction, which directly
influences fuel economy and crashworthiness [7, 8].
Engineers are continually exploring cutting-edge
materials and designs that enhance both performance
and safety ratings in vehicles. To meet these diverse
and pressing needs, multi-material solutions emerge
as a transformative approach. By skilfully combining
the unique properties of various alloys, these
solutions enable the optimization of multiple
performance metrics—ensuring that the innovations
in lightweighting do not compromise strength, safety,
and functionality [12]. Lightweighting is a primary
driver for multi-material adoption in both aerospace
and automotive industries. In aerospace, every
kilogram of weight reduction translates into
significant fuel savings and increased payload
capacity, directly impacting operational efficiency
and environmental footprint. For example, a 1%
reduction in aircraft weight can yield a 0.75% fuel
saving. This drives the use of lightweight materials
like aluminum, magnesium, titanium, and steel.
Similarly, in the automotive industry, lightweighting
reduces fuel consumption for internal combustion
engine vehicles and extends range for electric
vehicles [13]. Lighter structures also contribute to
improved handling, acceleration, and braking
performance. Multi-material construction,
strategically placing optimal materials where needed,
facilitates these weight reductions while maintaining
structural integrity and crashworthiness [14]. Multi-
material  manufacturing  offers compelling
sustainability — advantages, primarily through
lightweighting which reduces energy consumption
during operation. For instance, lighter aircraft and
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vehicles consume less fuel, resulting in decreased
greenhouse gas emissions [15]. The enhanced
durability and corrosion resistance of multi-material
components can extend product lifespan, reducing
the frequency of replacement and associated resource
consumption. Furthermore, advanced solid-state
manufacturing processes often generate less material
waste compared to subtractive manufacturing [16].

The aerospace sector extensively utilizes Al, Mg, and
Ti alloys for their high strength-to-weight ratios,
crucial for fuel efficiency and performance [3].
Multi-material integration is applied in various
aircraft components. Aluminium alloys, such as 2xxx
and 7xxx series, are prevalent in airframes and
structural elements, often combined with titanium for
high-stress areas or specific functional requirements
like fasteners [3, 17]. For example, titanium alloy
fasteners offer high strength levels, replacing heavier
steel or nickel fasteners [17]. Multi-material
structures also appear in engine components, where
Ti alloys withstand extreme temperatures and fatigue,
while Al alloys are used in less thermally demanding
sections [18, 19]. Multi-material design stands at the
cutting edge of the lightweight revolution in
automotive mass production. While the incorporation
of weight adding safety features, advanced cruise
control systems, and sophisticated infotainment
technologies is essential for modern driving, it is
imperative that multi-material structure offset this
weight burden by innovatively reducing the weight of
individual components. At the same time, pressure
from economical design practices, the pursuit of
compactness and stringent emission control
regulations also impose vital constraints on vehicle
weight. Striking the perfect balance between these
elements is key to achieving the future of efficient
and cutting-edge automotive engineering [20-24].
Multi-material solutions, integrating Al, Mg, and
high-strength steels, are pivotal in achieving these
goals  while  maintaining or  enhancing
crashworthiness. Aluminium alloys are widely used
for body structures, engine blocks, and chassis
components due to their low density and high
strength [25-27]. Magnesium alloys, offering even
greater weight savings, are finding applications in
interior components and increasingly in structural
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parts where their formability challenges can be
addressed by techniques like semi-solid metal
processing[28,29]. Multi-material designs optimize
energy absorption during collisions by strategically
placing different materials to manage deformation.
For instance, a combination of Al alloys and
advanced high-strength steels or magnesium can
create tailored crash zones. Solid-state joining
methods are particularly relevant here, as they enable
robust connections between dissimilar metals without
compromising the integrity of lightweight structures
[30-33]. Marine environments pose unique
challenges due to high corrosivity, demanding
materials with exceptional resistance and structural
integrity. Aluminium alloys, like AAS5754, are
common in shipbuilding and marine applications,
particularly for their lightweight properties [34].
Multi-material constructs often combine aluminium
with other alloys to optimize performance. For
example, nickel alloys are extensively applied in
shipbuilding and marine engineering, including high
elastic limit steels. Titanium alloys, such as Ti-6242,
are selected for marine gas turbine engine compressor
components due to their superior performance in
corrosive conditions [35]. Beyond lightweighting,
multi-material structures must satisfy rigorous
durability and safety standards. Components in
aircraft and automobiles endure complex loading
conditions, including fatigue, impact, and corrosion.
Multi-material designs can enhance these properties
by combining materials that excel in specific
performance areas; for instance, a composite
structure for stiffness paired with metal inserts for
impact energy absorption. Regulatory bodies impose
strict requirements on structural integrity, crash
safety, and material traceability. This necessitates
extensive testing and validation of multi-material
joints and assemblies to ensure compliance. The long
service life of aerospace components, often decades,
demands exceptional durability and resistance to
environmental  degradation. In  automotive
applications, crash energy management and
passenger safety are paramount, influencing the
selection and integration of materials with specific
deformation characteristics. The ability to predict and
control the behaviour of complex multi-material
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interfaces under various service conditions is
therefore critical [36]. Multi-material solutions
fundamentally  transform  the  performance
capabilities of structures across aerospace, marine,
and automotive sectors. By selectively deploying Al,
Mg, and Ti alloys, engineers can achieve an optimal
balance of properties that monolithic materials cannot
provide. For aerospace, multi-material designs
directly contribute to significant weight reductions,
translating into lower fuel consumption, increased
payload capacity, and extended range for aircraft [3].
The strategic placement of high-strength titanium in
critical load-bearing areas, combined with
lightweight aluminium or magnesium in less stressed
regions, enhances overall structural efficiency and
fatigue life [16]. In marine applications, multi-
material approaches improve resistance to harsh
corrosive environments while reducing vessel
weight, thereby increasing speed, stability, and
operational lifespan [18]. Automotive designs benefit
from reduced vehicle mass, which directly leads to
improved fuel economy, lower emissions, and
superior acceleration [2]. Furthermore, the tailored
mechanical properties of multi-material structures
can enhance crashworthiness by distributing impact
energy more effectively across diverse materials,
improving occupant safety [7, 37].

3. Multimaterial Manufacturing

A wide range of manufacturing methods are being
used for production of multi-material laminates.
Selection of proper process depends upon materials
being used, desired properties in final product, extent
of defects, volume of structure and economy.
Conventional methods like casting, forging, joining,
and machining for manufacturing of multi-material
structures are replaced by advanced methods to take
advantage of economy, ability to process complex
shapes with higher accuracy. Different fusion based
and solid state techniques are being used to develop
multi-material structures. The emerging Additive
Manufacturing technology offers green solutions and
stands tall in dealing with complex shapes, quality
and durability [38]. With the rise of industrialization
and market globalization, there is a growing demand
for efficient manufacturing processes that can support
a rapidly expanding economy. The ideal
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manufacturing approach should be reliable, offer
shorter lead times, provide greater material
adaptability, minimize waste, require little to no post-
processing, utilize inexpensive tools, and be cost-
effective in terms of materials and storage. While
traditional manufacturing methods have been widely
adopted across various industries, they often fall short
of meeting the diverse requirements of modern
products. In recent decades, additive manufacturing
(AM) has emerged to bridge this gap [39-41].
Additive manufacturing is emerging as a remarkably
versatile  production  technique  poised to
revolutionize traditional manufacturing methods in
the near future. Recently, multi-material additive
manufacturing (MMAM) has captured attention for
its ability to efficiently fabricate intricate structures,
drastically reducing both production timelines and
material costs [42]. A diverse array of innovative
MMAM technologies has been developed, actively
making waves across various industries and
reshaping the landscape of manufacturing as we
know it [43]. Today’s additive manufacturing (AM)
technologies have revolutionized the creation of
innovative geometries. Future AM systems that
enable the simultaneous processing of multiple
materials in a single build will unlock new product
functionalities  that traditional —manufacturing
methods simply cannot match. The field of multi-
material additive manufacturing, which integrates
dissimilar materials into complex three-dimensional
objects, is advancing with great promise, even if the
progress has been varied [44]. We are boldly moving
beyond homogeneous materials by embracing multi-
materials, gradient materials, and functional and
responsive materials, as well as those with
heterogeneous and graded properties. This evolution
clearly shows that a single additive process based on
either energy delivery or material deposition alone
will not be adequate. We are ready to redefine what
is possible in manufacturing [45-46].

3.1. Fusion-Based Manufacturing
Approaches for Multi-material
Structures

Fusion-based techniques, including various additive
manufacturing processes and laser welding, provide
enhanced design flexibility and often higher
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production rates, particularly for complex geometries
and tailored material distributions.
3.1.1. Laser welding

Laser welding is a high-energy density fusion process
that precisely melts and fuses materials using a
concentrated laser beam. Its localized heat input and
rapid cooling rates minimize the heat-affected zone
and distortion. This characteristic is particularly
beneficial for joining dissimilar metals, where the
formation of intermetallic compounds can be a
concern. Advanced fusion methods, such as electron
beam welding and specialized arc welding techniques
with modified heat input profiles, are used in
applications where high joint strength, hermetic seals,
and minimal thermal distortion are critical. Examples
include components in aerospace engines and
structural elements in the automotive industry. The
controlled energy delivery in these methods allows
for effective management of melt pool and
solidification characteristics, which are essential for
joining multiple materials [47-50]. A major concern
when welding aluminium (Al) and magnesium (Mg)
alloys 1is the formation of brittle intermetallic
compounds (IMCs), such as AI3Mg2 and Mg17Al12,
which can negatively impact joint performance.
Similarly, during the welding of aluminium/titanium
(Al/Ti) alloys, brittle IMCs like Ti3Al, TiAl, TiAl2,
and TiAl3 may form[51-53]. To suppress the
formation of these IMCs, one effective approach is
laser weld bonding (LWB), which uses structural
adhesives, interlayer or filler metals, or a
combination of both. LWB is a hybrid joining
technique that merges laser welding with adhesive
bonding. In this process, a structural adhesive is
applied between the two materials to be joined,
followed by laser welding, and the assembly is then
cured at the appropriate temperature for a suitable
duration. The joints produced through this method
exhibits superior properties compared to those made
by conventional laser welding or adhesive bonding
alone [54-57]. Additionally, the laser-adhesive-
interlayer hybrid technique has been successfully
developed and applied to join Al/Mg alloys, resulting
in joints of even higher quality than those produced
by either weld bonding or using interlayers
alone[58,59]. Interlayers are commonly utilized as
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barrier materials in the welding of dissimilar
materials. Their primary purpose is to prevent or
reduce the interaction between the base metals, which
helps limit the formation of intermetallic compounds
(IMCs). Various interlayers and filler metals,
including mild steel foil[60], cerium (Ce) foil[54],
titanium (Ti) foil[61], nickel (Ni) foil[62] and zinc-
aluminium (Zn-Al) filler metal[63], have been
successfully employed to join aluminium (Al) and
magnesium (Mg) alloys using laser welding
techniques[64,65].

3.1.2. Fusion based Additive Manufacturing
Additive Manufacturing (AM) is a well-established
leading-edge technology that is used to create
artefacts of simple as well as complicated shapes.
Human involvement in AM is minimal and
additionally it is cost effective [66-69]. Amount of
engineering wastage while utilizing AM techniques
1s significantly less and these processes are more eco-
friendly [70-73]. Materials used in AM include
metals and alloys, ceramics, polymers, composites,

smart materials, concrete, and biomaterials
[74]. Additive  manufacturing  (AM)  offers
unparalleled flexibility in creating complex

geometries and multi-material structures layer by
layer. As per ASTM standards, AM technology can
be majorly classified into seven types viz: directed
energy deposition (DED), binder jetting, powder bed
fusion (PBF), sheet lamination, VAT photo
polymerization, material extrusion, and material
jetting [11,34]. The DED, PBF, sheet lamination and
binder jetting offer interesting potential for
fabrication of metallic parts required for industrial
applications [75-77]. Rest of the AM processes like
electron beam melting, selective laser melting, and
laser engineered net shaping involve the addition of
an alloy or metal, layer-by layer and track-by-track,
which is achieved by melting & solidification of the
powders resulting in near-net-shaped parts. Directed
Energy Deposition (DED) and Powder Bed Fusion
(PBF) are prominent AM processes used for metals.
DED, for example, involves melting and fusing
material as it is deposited, enabling the creation of
functionally graded materials or multi-material
components by switching feedstock during the build
[78]. PBF methods, such as Selective Laser Melting
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(SLM) and Electron Beam Melting (EBM), precisely
fuse powdered materials. While typically single-
material processes, advancements explore multi-
material PBF through techniques like multi-powder
feeders or segmented powder beds. Multi-Photon
Polymerization (MPP) also enables multi-material
artifacts by independently manipulating
microparticles within a photopolymer structure [79].
These capabilities support the fabrication of
components with spatially tailored properties, crucial
for aerospace and automotive applications requiring
optimized performance and weight. The control over
local material composition allows for advanced
design possibilities [80, 81]. Compared to
conventional manufacturing methods, the MAM
offers several advantages: the capability to produce
parts with many materials in any configuration, near-
net-shaped parts with high design freedom, less
material wastage, reduced part fabrication time, and
cost. ~ Multi-material ~ additive = manufacturing
(MMAM) offers several opportunities for designing
complex, functional, highly personalized, and high-
value products with improved properties. Recently,
direct energy deposition (DED) has been attracting
considerable  attention in  metal  additive
manufacturing due to its capability of producing
multi-materials and composition gradient materials
with a high degree of geometrical design freedom and
relatively high productivity compared to powder bed
fusion processing. During multi-material fabrication
using DED processing, metal powders are injected
through different powder-feeding nozzles by
controlling the feeding rates in a high-energy laser
beam. The molten material is deposited as a thin
layer, and several such layers are deposited one over
the other to produce a 3D part so that various types of
parts of locally different chemical compositions and
properties can be manufactured. Layered structured
materials (i.e., clad materials) are the simplest
configuration of the multi-materials [82]. In a multi-
material combination with soft and hard materials,
the hard domain contributes high strength whereas
shock absorption can be secured from the soft
domain. These hybrid structures are highly desirable
in automobile industries [83]. A new approach for
multiple material SLM by combining powder-bed
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spreading, point-by-point multiple nozzles ultrasonic
dry powder delivery, and point-by-point single layer
powder removal to realize multiple material fusion
within the same layer and across different layers. A
clear distinct sandwich layer distribution and a good
metallurgical bonding were obtained at the material
interfaces for the material combinations using

stainless steel powder and Nickel powder
(316L/In718) and (stainless steel and Copper alloy
powder) 316L/CulOSn[84]. The multi-metal

processing by laser powder bed fusion (L-PBF)
causes additional complications such as loss of
alloying elements, intermetallic phases, and unmelted
particles apart from balling, porosity, cracking, and
oxide inclusions [85]. Steel/copper multi-material
parts which combine the good strength and corrosion
resistance of steel with the high heat conduction and
wear resistance of copper may be a promising
solution for the fusion reactors, conformal cooling
channels, automobile, rail and aviation industries
[86]. Multi-material FDM is achieved by employing
multiple extrusion heads where nozzle temperature,
printing speed, and resolution can be individually
controlled as necessary. However, some drawbacks
of multi-head FDM still exist, such as inherent poor
surface finish with ridges, limited printing resolution,
slow build speed, and low interfacial bonding
strength. In particular, low interfacial bonding is a
critical issue in producing 3D parts with dissimilar
materials. Multi-material printing with Material
Jetting (MJ) has been easily implemented following
the same approach using multiple jetting heads
[87,88] supplying multiple photo-curable materials
and support materials are processed through jetting
heads. However, multi-material printing with
Material Jetting faces difficulty in processing high
viscosity material and also demands keen monitoring
and control system [89, 90]. Multi-material additive
manufacturing (MMAM) with SLA requires material
exchange from one liquid to another in the vat.
Initially manual changing and later, a rotating vat
carousel system was used to automate material
change. Recently, an aerosol jetting system has been
employed in SLA to directly supply different
materials [91]. The aerosol system has multiple the
material containers and atomizers that transform
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liquid material into small droplets [92]. MMAM
offers an excellent tool to directly manufacture parts
with geometrical complexity as well as material
variety. Multi-material AM (MMAM) methods have
recently been applied to fabricate complex structures
in an efficient way to save production time and the
cost of the materials used [93]. With the advantage of
fabricating multiple materials in a single
manufacturing process, it is possible to produce
functionally graded materials (FGM) with improved
material interface characteristics. Multi-functional
3D parts may lead to revolutionary solutions in a
variety of fields including biomedical engineering,
soft robotics, and electronics. Despite the remarkable
advances in MMAM in the past few years, there are
still many outstanding challenges to be addressed
including low production throughput, poor scalability
and surface finish, limited material selection, high
cross-contamination, and low interfacial bonding
between different materials [94].

3.1.3. Challenges In Fusion Based Processes
Despite advancements in fusion-based metal additive
manufacturing (MAM), the structural integrity of the
products often falls short, leading to inadequate load-
bearing capacity [95-98]. The layers of 3D printed
parts are created through a layer-wise deposition of
melted filler material, similar to the fusion welding
process. This can result in various non-equilibrium
solidification defects, such as cracking and porosity,
which can adversely affect the performance of the
produced parts. Induced porosity is a common defect
in fusion-based MAM [99-101]. When excessive
energy is applied during the process, issues like
porosity and material contamination can occur due to
the ejection of spatter. Conversely, insufficient
energy from the electron or laser beam may prevent
complete melting, leading to the formation of
incomplete fusion holes. Additionally, during alloy
solidification, low-melting point particles may be
rejected at the solid-liquid boundary, creating a thin
liquid layer between solidified dendrites [102]. This
can result in solidification shrinkage, causing hot
cracking or tearing, particularly in non-weldable
alloys such as high-strength aluminium alloys
[103,104]. Other concerns include anisotropy,
distortion of manufactured parts, and residual stresses
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[103,105,106]. During the deposition of consecutive
layers, reheating of previously deposited layers can
lead to unwanted phase transformations. The
presence of residual stresses in parts created by these
techniques remains a challenge. The tendency for
large grain sizes and segregation in formed
components results in an inhomogeneous structure.
Focusing on refining processing parameters and
developing new alloy compositions may help achieve
a more uniform microstructure [107-109].
Consequently, there is a pressing need for the
development of new technologies to address these
issues associated with traditional fusion-based MAM
methods [95,110]. Defects like pores, cracks, and
insufficient fusion can be addressed by promoting
further research into process optimization and
materials selection, particularly, for alloys that are
more susceptible to hot cracking [111-113]. By
exploring advanced techniques for  stress
management and component design, enhancement in
the structural integrity of the materials facing the
issue of rapid solidification leading to significant
deformation and residual stress can be achieved
[114].  Understanding the above-mentioned
challenges in fusion-based additive manufacturing
(AM) can pave the way for improvements and
innovations. Refining fusion-based AM technologies
can unlock their full potential for manufacturing
high-quality components.

3.2. Solid State Manufacturing Approaches

for Multi-Material Structures

Due to the intricate liquid-to-solid phase
transformation process, components created through
fusion-based MAM methods often display
anisotropic behavior and diminished transverse
strength which limits their suitability for structural
applications, urging us to rethink their utilization.
This fundamental fabrication problem of fusion-
based MAM attracts the attention of researchers. In
response to these concerns, many researchers have
focused on eliminating MAM's limitations and have
proposed innovative approaches. One promising
method involves incorporating solid-state friction-
based techniques into additive manufacturing.
Various friction-based additive techniques (FATSs)
are currently in practice [115-120].
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3.2.1. Diffusion Bonding
Diffusion bonding is a solid-state joining technique
that creates atomic bonds between mating surfaces
through the application of heat and pressure. This
process typically occurs at temperatures below the
melting point of the materials, relying on atomic
diffusion across the interface. It offers advantages for
joining dissimilar metals and alloys, including those
with significantly different melting points or prone to
forming brittle intermetallics upon melting. Diffusion
bonding often produces joints with properties very
close to the parent materials, particularly in terms of
ductility and fatigue strength, due to the absence of a
distinct weld bead or fusion zone. Variants of solid-
state joining include explosive welding, which uses a
high-velocity impact to create a metallurgical bond
between two metals [121-123]. These methods are
often employed for critical applications requiring
high integrity and minimal distortion, such as in
aerospace components. This process is suitable for
complex geometries and dissimilar material
combinations, including Ti alloys, where high-
integrity joints are required without macroscopic
melting. Hot Isostatic Pressing (HIP) and Spark
Plasma Sintering (SPS) are related techniques that
apply high pressure and temperature to consolidate
powders or bond components. SPS, for instance,
offers fast heating rates and shorter sintering times,
enabling the production of high-density materials
with controlled grain growth, particularly for high
entropy alloys. The FAST-forge process, combining
Field Assisted Sintering Technology (FAST) with
hot forging, effectively recycles Ti-6Al-4V swarf
into components with properties comparable to melt-
wrought material, demonstrating its utility for
titanium alloy processing [124-126].
3.2.2. Solid State AM Approaches

Solid-state additive manufacturing (AM) methods
offer unique advantages for creating complex multi-
material geometries, especially for Al, Mg, and Ti
alloys. These techniques build parts layer-by-layer
without exceeding the melting point, reducing
thermal distortions and residual stresses common in
fusion-based AM [127,128]. Additive Friction Stir
Deposition (AFSD), as mentioned, can repair and
build features on existing components, offering
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flexibility for complex repairs in alloys like A17075
[129]. Cold Spray, another solid-state AM method,
involves accelerating metal powder particles to high
velocities, causing them to plastically deform and
bond upon impact with a substrate. This process is
effective for depositing various metals, including Al
and Ti, and can create functional multi-material
layers without significant heat input [130,131].
Hybrid additive manufacturing, which combines AM
with traditional methods, also broadens design
possibilities, allowing for the creation of parts with
tailored properties on existing substrates [132].
3.2.3. Friction Stir Welding and Allied
Processes
Friction Stir Welding (FSW) is a solid-state joining
process particularly suited for dissimilar material
combinations, including  aluminium  alloys,
magnesium alloys, and even aluminium to steel. The
process involves a non-consumable tool rotating and
traversing along the joint line, generating frictional
heat that softens the material without melting it. This
solid-state nature avoids many issues associated with
fusion welding, such as solidification defects,
liquation cracking, and excessive distortion [121-
123]. FSW produces fine-grained microstructures in
the stirred zone, leading to improved mechanical
properties compared to conventional fusion welds.
Variants like friction stir spot welding (FSSW) and
friction stir processing (FSP) further extend the
applicability of this technology to complex joint
geometries and surface modifications for multi-
material systems. FSW's capability to join
traditionally unweldable alloys makes it highly
relevant for lightweight structures in transport
applications. Solid-state methods, like FSW and
diffusion bonding, operate below the melting point,
thus minimizing issues related to solidification
defects, residual stresses, and the formation of brittle
intermetallic compounds, particularly when joining
materials with vastly different melting temperatures.
These processes often yield joints with properties
closer to the parent materials, especially regarding
ductility and fatigue resistance. However, solid-state
techniques typically require precise surface
preparation, high clamping forces, and can be slower
for certain applications. Fusion-based methods,
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including traditional welding and additive
manufacturing, offer higher process speeds and
greater flexibility in joint geometry for many material
pairs. Additive manufacturing, in particular, enables
unprecedented design freedom and the creation of
functionally graded materials or complex multi-
material structures [133-136]. Conversely, fusion
processes generally introduce larger heat-affected
zones, more significant residual stresses, and can lead
to metallurgical incompatibilities when joining
highly dissimilar materials. The choice between
solid-state and fusion approaches depends on the
specific ~material combination, desired joint
properties, production volume, and cost
considerations. Friction stir-based technologies are
the newest addition to the additive manufacturing
technologies, and there is a lot of unrealized potential.
[137-140].

3.2.4. Friction Stir Additive Manufacturing

(FSAM)
Friction Stir Additive Manufacturing is a state of art
process. FSAM demonstrates significant

opportunities notably in the aerospace, automobile,
marine and defence sector. This cutting-edge
technique has the ability to efficiently manufacture
multifunctional, lightweight, high-strength structural
parts to cater to the needs of aircraft and other
technical parts. A key application of FSAM in
aerospace is the production of stiffeners and stringers,
which are vital for structural integrity. FSAM opens
up new horizons for manufacturing large
components, paving the way for the creation of entire
satellite and spacecraft structures. Reports of Boeing
[141] and Airbus 2006 [142] had explored the
potential of FSAM particularly, in the aerospace
industry. As FSAM technology continues to advance,
it is poised to effectively tackle a range of challenges
in metal additive manufacturing, affirming its role as
a game-changer in the industry. White [143] filed a
ground-breaking patent for a Friction Stir Additive
Manufacturing (FSAM) process in 2002 that
consolidates metal powders and materials using
friction joining. Three years later, in 2005, Thomas et
al. [144] unveiled a revolutionary application of
friction stir welding-based processes for additive
manufacturing. In 2006, Airbus demonstrated the
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incredible potential of friction-based additive
manufacturing technology by fabricating 2050 Al-Li
wing ribs, showcasing its ability to create low-cost,
lightweight components [145,146]. By 2012, Boeing
recognized the transformative power of friction-
based additive manufacturing for the pre-forming of
structural components, paving the way for rapid
manufacturing and significantly enhancing material
utilization [107,142]. High strength multi-material
structures can be effectively built by this game
changing technique. Designing a customized variety
of multi-layered alloys along with functionally
graded structures can be fabricated by FSAM
method. Overall refinements in mechanical,
metallurgical properties with fine equiaxed
microstructure have been reported by latest research
on FSAM [147-150]. Traditional additive
manufacturing  (AM)  techniques  encounter
challenges when producing graded components due
to variations in thermomechanical properties, thermal
expansion coefficients, and melting points of parent
materials. The formation of undesirable intermetallic
compounds (IMCs) can weaken welds. However,
these issues can be addressed through Friction Stir
Additive Manufacturing (FSAM) [151,154]. In
FSAM, the thermal expansion problem is mitigated
as melting of materials to join is completely avoided,
permitting only localized heat transfer due to its
solid-state nature. The intense plastic motion and
shearing action in FSAM facilitate the distribution
and control of the size and uniformity of IMCs at the
interface. Notably, FSAM processes can generate
custom materials and alloys in a single operation.
They also allow for the manipulation of alloy
composition and microstructure by controlling the
mixing of materials. Therefore, FSAM can be
considered one of the most viable techniques to
produce light weight multi-material structures [155-
157]. FSAM has proven to be an effective method for
producing defect-free components with excellent,
uniform mechanical properties, an equiaxed refined
grain structure, and a rapid production rate. This
approach effectively addresses the limitations of
existing melting-based additive manufacturing
processes. Additionally, FSAM can be utilized to
create bulk materials with an ultrafine grain structure.
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The main challenge of this innovative process lies in
eliminating defects by controlling the process
parameters. Most studies have focused on basic
parameters such as rotation speed, transverse speed,
and tilt angle. However, there is a need to explore and
investigate additional process parameters to achieve
a sound microstructure and optimal mechanical
properties [158]. FSAM, which combines the
advantages of the AM (Additive Manufacturing) and
FSW (Friction Stir Welding) methods, offers several
benefits over traditional fusion welding methods.
These advantages include energy efficiency,
environmental friendliness, the ability to weld similar
or dissimilar alloys, and reduced distortion. FSW is
an effective welding process for joining dissimilar
materials, resulting in lightweight and high-
performance final products.[159] All the methods
introduced above are free from the solidification-
related imperfections often found in fusion-based
processes. Key benefits of FSAM include reduced
distortion, lower porosity, and the potential to
fabricate larger parts, the capability for multi-
material  bonding, improved reproducibility,
exceptional metallic properties, and the ability for
microstructural  engineering  through tailored
microstructures [160]. Currently, FSAM is at
manufacturing readiness levels that allow for
compact designs and scalability in high-technology
applications [161]. FSAM induces complex material
flow in the stir zone due to the rotating tool’s stirring
motion, which homogenizes the microstructure and
promotes dynamic recrystallization. This leads to the
formation of fine, equiaxed grains with improved
mechanical properties as compared to the base metals
or fusion welds exhibiting coarse grains and
segregation. In multilayer FSAM, repeated thermal
cycling due to subsequent passes affects
microstructure progression. Grain sizes may vary
along the build height, and multiple passes can refine
precipitates and dissolve coarse intermetallics,
further enhancing properties. Dynamic
recrystallization also helps in redistributing alloying
elements uniformly and eliminating defects like voids
and cracks. The thermal cycles during layering
control precipitate coarsening, dissolution, and
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refinement, which influence hardness, tensile
strength, and ductility [162]

3.3. Hybrid Solid-State Processes for

Dissimilar Material Integration

Hybrid solid-state processes combine two or more
joining mechanisms to leverage their individual
strengths for enhanced multi-material integration.
Multi-materials can combine friction stir technique
with other methods to improve joint quality and
extend the range of compatible materials. These
hybrid approaches aim to overcome limitations of
single processes, such as achieving higher joint
strengths or reducing processing time for complex
geometries. An example includes the combination of
mechanical fastening with solid-state bonding,
forming a hybrid joint that benefits from both load-
bearing mechanisms. Another area involves
integrating material deposition techniques with solid-
state joining to create functionally graded interfaces,
thereby mitigating abrupt property changes between
dissimilar materials. The objective is to produce
robust and durable multi-material structures that
withstand demanding operational environments in
aircraft and automobiles [163-164]. Weflen et al.
(2021) introduced a method for fabricating multi-
material objects by combining additive and
subtractive manufacturing techniques. This hybrid
approach allows for a diverse range of material
compositions, enabling more effective fulfilment of
functional requirements compared to using
homogeneous materials produced through a single
manufacturing process. The development of multi-
material objects made from different materials has
faced challenges due to the absence of a compatible
structural interface suitable for in-envelope hybrid
manufacturing. This study aims to expand design
possibilities and optimize performance metrics [165].
Hybrid friction stir channelling (HC) represents a
novel manufacturing technique that innovatively
merges solid-state friction stir welding with friction
stir processing. This sophisticated method not only
facilitates the simultaneous welding of multiple
components but also carves out intricate sub-surface
channels precisely where they are needed in the stir
zone. HC demonstrates an approach for unobstructed
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sub-surface channelling and welding for multi-
material components, significantly enhancing both
their physical and chemical performance. A
remarkable demonstration of HC's capabilities was
achieved using a multi-material system comprising
an 8 mm thick Aluminium-Magnesium alloy
(designated as AAS5083) and a 3 mm thick oxygen-
free copper (Cu-OF) plate by Karvinen et.al. (2023).
This process seamlessly crafted a multi-material Al-
Cu component, showcasing its potential. A striking
sub-surface quasi-rectangular channel, measuring 9.6
mm in width and 3.3 mm in height, was skillfully
produced within the AAS5083 alloy, while
simultaneously ensuring defect-free welding with the
thin Cu-OF plate situated just beneath the channel
area. The resulting sub-surface channel revealed
captivating wall surface features, boasting non-
uniform and non-oriented surface roughness that are
perfectly suited for activating turbulent fluid flow.
Moreover, microhardness assessments unveiled a
domain of heightened strength within the stirred
material at the ceiling of the sub-surface channel,
surpassing the properties of the base materials. This
remarkable advancement not only highlights the
ingenuity of HC but also opens new horizons for
multi-material applications [166]. The solid-state
welding method known as hybrid metal extrusion and
bonding (HYB) has been developed relatively
recently and was originally intended for butt joining
aluminium (Al) plates and profiles. The HYB method
works by filling the weld groove between the base
materials (BMs) to be joined with a solid filler metal
(FM), utilizing the principles of continuous extrusion.
This process involves a specially designed extruder
tool that features a non-consumable rotating steel pin
equipped with a set of moving extrusion dies at its
lower end. Research conducted by Bergh et al. (2023)
explores the potential of this method by
characterizing a unique butt joint made from
aluminium, copper, steel, and titanium (Al-Cu—
steel-Ti) created in a single pass. Their
characterization highlights the significant potential of
HYB for multi-material joining and provides
essential insights into solid-state welding involving
the bonding of aluminium to titanium, steel, and
copper [167].
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4. Material Lamination Architectures through
FSAM
Different layers of material are stacked and joined to
compile the required height of FSAM built.
According to application area, surrounding
environment, service condition and blend of
customized properties, a number of layers of material
are processed into a single working unit. Variation in
material and geometrical dimensions of FSAM built
give rise to different laminate architecture.
4.1.1dentical Material Laminates

Laminates created out of stacks of the same material
like Al Alloy laminate, Mg Alloy Laminate, Cu
material laminates are fabricated using the FSAM
process. This is eventually needed to build a larger
height from average thickness plates [168].

4.1.1. Aluminum Based Laminates
Palanivel et al. (2015) in describing FSAM as an
additive technique manufacturing high strength build
fabricated by FSAM, laminated a total height of 11.2
mm from four sheets each of thickness 3.17 mm of
aluminum alloy Al-5083 and found finer grain size,
increased hardness in the build as compared to parent
material. Improvement in both yield and ultimate
tensile strength was also reported [142]. The work
published by Palanivel laid the foundation stone for
researchers. Yuqing et al. (2015) fabricated a height
of about 42 mm from the nine-layer FSAMed
unweldable Al 7075 (Al-Mg-Zn-Cu) alloy build.
They reported increasing grain sizes in layers from
top to bottom. Gradual increase in the strength and
decrease in elongation in the direction of the build
was reported [149]. Z. Zhao et al.(2019) stacking 2
mm thick Al-Li 2195-T8 alloy revealed
inhomogeneous hardness and ductility throughout the
build length[169]. Zhang et. al. (2019) created an
integrated model after experimenting on 4 mm thick
AA6061-T6 plates and concluded that the hardness
and yield strength increases with the increase in
building height as an effect of the decrease in
reheating peak temperature. Smaller average grain
size was observed with the increase in building
height. He et.al. (2020) investigated microstructural
evolution and changes in microhardness and tensile
properties variation along building direction of 4mm
thick 12 sheets of 7NO1-T4 (Al-Zn—Mg) aluminum
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alloy resulting in 42mm build height. The precipitates
in the non-overlapping interface regions and the grain
size were found to be increasing from the top to the
bottom of the build [170]. Study made by M.
Srivastava et. al. (2021) involving six layers of 4 mm
thick plates of AI-5059 alloy showed higher hardness
and thereby strength of laminated composite Lu
et.al.(2021) fabricated two stacked lap weld builds
with cast and wrought AA2050 (Al-Cu-Li). Cast
AA2050 stack had no significant impact on the
mechanical performance. Inhomogeneous
distribution of hardness was reported along the
vertical length [171]. Z. Shen et.al.(2022) fabricated
defect-free build from unweldable Al 2195 alloy with
Imm thick three rolled plates and investigated
influence on the microhardness and mechanical
properties aiming at controlling and optimization of
microstructure  for  further improvement of
mechanical properties [172]. Li et. al. (2022)
conducted underwater FSAM of Al-Zn-Mg-Cu
alloy of plate thickness 3.5 mm followed by natural
aging for 7 days which revealed overaging in the low
hardness zone (LHZ) of the build suggested low-
temperature aging treatment to overcome over aging
and improvement in microhardness and both yield
and ultimate strength of laminate [173]. Hassan et.al.
(2023) fabricated 4 layered laminates from aerospace
aluminum alloy Al-7075. In order to optimize process
parameters, understand material mixing and heat
generation phenomenon experiments were conducted
at different speed, feed and using different tool pin
profiles. Mixing behavior using plain cylindrical,
cylindrical threaded, and taper threaded pinned tools
was analysed. It was observed that the taper threaded
tool rotating at 500 and 1200 rpm gives good results
[174].

4.1.2. Magnesium Based Laminates
Magnesium though lighter material was less
experimented till date as compared to Aluminium
alloys. Palanivel et al.(2015) built a multilayered
stack consisting of four sheets of an WE43, Mg based
alloy through FSAM to build height of 5.6 mm.
Experimentation showed extremely fine, uniform and
densely populated coherent precipitates resulted into
superior strength and concluded that FSAM can be an
effective route to fabricate high performance
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magnesium alloy components[117]. A seven-layer
laminate from AZ31 magnesium alloy 5-mm-thick
plates was constructed by Wlodarski et al.(2021)
produced structurally sound metallurgical bonding
between layers without any volumetric welding
defects and found microhardness variation in vertical
height and in horizontal cross section[175]. Ho et al.
(2020) have ingeniously crafted a stacked composite
of AZ31B magnesium and hydroxyapatite using the
innovative FSAM method. This composite not only
tackles the persistent challenges of corrosion but also
significantly enhances apatite formation and
promotes better cell adhesion on the surface of the
magnesium alloy. The findings compellingly
demonstrate the superior corrosion resistance of
AZ31B, validated through rigorous in-vitro testing
conducted by the author [176,177].

4.2.Multi-material Laminates
To address the need of multifunctional laminates with
tailored properties and refined microstructure, a
variety of materials are designed and stacked to form
multi-material laminates [168].

4.2.1. Fully Gradient structure
Fully gradient composite from 3 mm thick plates of
Mg-AZ91, Cu, and Al-7075 was constructed by
Srivastava et.al.(2021) [178]. Jha et.al.(2022)
fabricated gradient structure using three Al alloys Al-
5083-0, Al-6061-T6, and Al-7075-T6 formed height
of 8.8 mm to develop a microstructure gradient
composite [179].

4.2.2. Alternative Gradient Structure
Eight sheets of multi-layered polymer-steel
composite were alternately stacked by H. Derazkola
et.al. (2020) and evaluated mechanical properties,
particularly, hardness, flexural bending and tensile
strength to sought solution in the automobile
industry[180]. Later on Derazkola et.al. (2022)
proposed composite laminate utilizing the same
technique for polypropylene (PP) and textile stainless
steel material[181]. The flexural and tensile strength
was reported to be greater than PP. Venkit et.al.
(2022) constructed 18 mm thick laminate from 3mm
thickness alternate seven layers of aluminium alloys
AA6061-T6 and AA7075-T6. The grains in the
bottom layers were observed to be coarser, while
those in the top layers were finer. Additionally,
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certain banded grains with a coarser texture form in
the overlapping transition zones. The precipitate
particles generated shown similar trends in their
distribution, size, and structure. The study concluded
that the FSAM approach holds tremendous potential
for fabricating large structures that are not only free
of defects but also exhibit expected mechanical
properties. As a result, this innovative composite
emerges as a compelling alternative to the
conventional AA6061 material used in automobile
components, offering  significantly enhanced
performance that can redefine industry standards
[182]. Five alternate layers of AA6061-T6 and
AA7075-T6 alloys were welded by one over the other
in the research made by Kundurti et.al. (2023).
AA7075-T6 being harder was kept at top as it can be
flown easily into comparatively softer AA6061-T6
alloy. AA6061/AA7075 metal matrix composite
manufactured through the FSAM route showed
promising results with enhanced microhardness and
tensile strength [157].
4.2.3. Sandwich Structure

Laminated composites are materials made up of
several layers of different substances, widely used
across various industries. Interstitial-free (IF) steel
sheets are known for their excellent drawability and
surface quality, although they have lower strength
compared to low carbon steel sheets like St52. In
contrast, St52 steel sheets offer good strength but
tend to have lower surface quality. By combining the
properties of these two types of steel sheets, a
laminated structure was created by Roodgari et.al.
(2020) that incorporates the strengths of both. This
approach is particularly useful in automotive
components, such as pillars, which require high
strength for safety alongside very good surface
quality. The IF/St52 steel laminated composite, with
thicknesses of 0.7mm and 2mm, respectively, is
prepared using the FSAM method. The results
indicated that the layers exhibited strong bonding,
and the interface was well-defined at lower travel
speeds. However, as the traverse speed increased,
diffusion occurred at the interface [183]. Tan et.al.
(2021) used FSAM method to produce aluminium
matrix composites reinforced with nanoparticles. In
the initial stirring process, two 4 mm thick slotted
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plates and one 2 mm thick cover plate are stacked. To
investigate the effect of re-stirring, an additional 4
mm thick plate is stacked for the second layer. The
slots designed to hold the nanoparticles are 1.5 mm
wide and 2 mm deep. All plates, including the slotted
and cover plates, are made from AA6061-T6
aluminium alloy. Samples that include Al203
nanoparticles exhibit finer grain distributions and
increased hardness when processed using FSAM.
The re-stirring process in FSAM reduces the
aggregation of nanoparticles, resulting in greater
hardness and a decrease in grain size [184].
4.3.Similar Multi-Material Laminates

FSAM offers a novel pathway to fabricate layered or
composite multi-material structures by exploiting the
solid-state joining of similar or dissimilar Al and Mg
alloys. The primary objective is to develop defect-
free, high-strength  joints with  controlled
microstructure and reduced formation of detrimental
phases such as thick IMCs. This is achieved by
precise control over thermal cycles, tool design, and
process parameters thereby enhancing bonding
effectiveness and mechanical properties of the joined
components [185]. The approach holds significant
industrial relevance, especially in sectors requiring
complex geometries, lightweight materials with high
structural integrity, and corrosion-resistant joints. By
building multi-layered composites incorporating
alternating or hybrid layers of aluminium and
magnesium alloys, FSAM enables customization of
mechanical and functional properties tailored to
application needs in aeronautics, automotive parts
manufacturing, and marine structures. The method’s
ability to minimize secondary machining and produce
large, defect-free builds further adds to its economic
and technical potential.[186] In joining similar Al
alloys such as AA6061 and AA7075 via FSAM,
microstructural evolution is characterized by
dynamic recrystallization producing refined and
equiaxed grains in the stir zone [187]. The process
disrupts initial coarse grain structures and precipitate
clusters, leading to a more homogeneous
microstructure with optimized distribution of
strengthening phases. Thermal cycling during multi-
layer additive building impacts precipitate size,
morphology, and distribution, influencing the
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hardness and strength gradients throughout the build
height [188]. Magnesium alloys such as AZ31 and
AZ61 exhibit unique challenges in FSAM due to their
high chemical reactivity and limited ductility. The
process induces grain refinement through dynamic
recrystallization, resulting in finer equiaxed grains in
the stir zone. Variations in alloying elements and
process conditions influence phase transformations
and precipitate dissolution during the thermal cycles
inherent in FSAM [189]. FSAM’s controlled heat
input minimizes detrimental overaging or dissolution
of beneficial strengthening precipitates, preserving or
enhancing mechanical properties in the joints. The
microstructure typically shows uniform grain
refinement and reduced segregation, which are
directly correlated with mechanical performance
improvements noted in these alloys. The refined
microstructure enhances mechanical uniformity and
eliminates casting defects present in base materials.
Grain size control via optimal welding speeds and
rotation rates is essential to achieving consistent
properties across the additive build. FSAM
processing of Mg alloys improves hardness, tensile
strength, and wear resistance significantly [190].
4.4.Dissimilar Multi-Material Laminates

Dissimilar welding, which refers to the process of
joining two or more materials that have different
compositions, presents a range of challenges
compared to welding similar materials. Joining Al
and Mg alloys through FSAM inherently leads to the
formation of intermetallic compounds such as
Mg2Al3 and Al3Mg2 at the interface. These IMCs
form thin but brittle layers that can severely
compromise joint ductility and tensile strength. The
interface morphology is characterized by a complex
arrangement of diffusion layers, oxide inclusions, and
fragmented IMC particles [191,192]. The integration
of diverse materials, particularly aluminium (Al),
magnesium (Mg), and titanium (T1) alloys, presents
compelling  metallurgical  challenges  when
employing conventional fusion welding. These
challenges often manifest as the formation of brittle
intermetallic compounds (IMCs) and significant
residual stresses [193]. However, solid-state
manufacturing processes offer a sophisticated
solution by enabling the joining or consolidation of
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materials below the melting point of the constituent
alloys. This innovative approach not only preserves
the intrinsic properties of the base materials but also
minimizes distortion, allowing for the creation of
robust metallurgical bonds between otherwise
incompatible alloy systems. It's a transformative
method that unlocks new possibilities in materials
engineering [194,195]. Dixit et.al. (2023) developed
a multipurpose three-layered multifunctional
laminated composite from magnesium-based
AZ31B—Zn and Al 1100 as demanded in electronics
and biomedical fields through the FSAM route.
Conventional Mg alloy implants release hydrogen
gas and thereby the body cell gets detached from the
bone. The proposed FSAM method adds a
biocompatible layer to overcome this issue. The
microstructure of the developed composite revealed a
significant improvement in the grain structure at the
interfaces of the dissimilar materials. The
crystallographic structure is effectively oriented from
the advancing side to the retreating side, featuring
equiaxed and refined grains that contribute to a high
density of grain boundaries. This refinement,
combined with the microstructural modification
techniques employed in Friction Stir Additive
Manufacturing (FSAM), not only enhances the grain
characteristics but also leads to notable
improvements in the overall mechanical properties of
the composite [196].
4.5.Challenges in Dissimilar Welding

In the context of dissimilar welding, it is essential to
acknowledge and thoughtfully consider several
important  challenges  [197-200], including:
Incompatibility of Material: Dissimilar materials
often possess varying melting points, thermal
conductivities, and coefficients of thermal expansion.
Such differences can result in challenges, including
cracking, distortion, and residual stresses during the
welding process. To ensure effective fusion and
metallurgical bonding between these diverse
materials, it is imperative to meticulously control
welding parameters and apply the appropriate
techniques. This strategic approach will enhance the
overall quality and integrity of the weldment.
Microstructural inhomogeneity: When dealing with
dissimilar materials, it is essential to acknowledge
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that they may exhibit distinct microstructures, grain
sizes, and phases. By understanding these variations,
we can effectively address the potential differences in
mechanical properties within the weld joint. Aiming
for a more uniform microstructure can help reduce
localized stress concentrations, thereby enhancing
the joint's resilience to cracking or failure under
mechanical or thermal loads. This thoughtful
approach can greatly improve the overall integrity of
the weld. Corrosion susceptibility: dissimilar
materials are prone to galvanic corrosion due to
formation of bimetallic couples at the weld interface.
The differing electrochemical potentials between
these materials can significantly elevate corrosion
rates, posing a serious threat to the long-term
durability of the weld joint. To safeguard against
these risks, it is vital to select the right filler materials
and to employ effective post-weld treatments. By
doing so, we can enhance the resilience of our welds
and ensure their integrity for years to come.

IMC Formation: When dissimilar materials are
fused together, intermetallic compounds (IMCs) can
form at the interface. These compounds have the
potential to dramatically affect both the mechanical
properties and the corrosion resistance of the welded
joint. The presence of brittle IMCs can severely
compromise the integrity of the weld, resulting in
diminished strength and ductility. Thus, the quest to
create robust welds while effectively reducing IMC
formation presents a formidable challenge in the
realm of dissimilar welding—a challenge that calls
for innovation and precision.

Thermal Gradient Effects: Dissimilar welding
creates significant thermal gradients in the weld zone
because of the differences in thermal conductivity
and heat capacity of the materials being joined. These
thermal gradients can result in distortion, warping,
and residual stresses, especially in thicker or more
complex structures. Effectively managing these
thermal gradients is crucial for preventing weld
defects and ensuring dimensional stability.
Complexity In Process Optimization: Welding
dissimilar materials presents a fascinating challenge
that it requires control over various parameters,
including heat input, travel speed, shielding gas
composition, and interpass temperature management.
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The intricate interplay among these factors and their
profound impact on weld quality and performance
call for thorough experimentation and meticulous
validation of the welding process. Successfully
navigating the complexities of dissimilar welding
demands not only a deep understanding of material
properties, welding techniques, and joint design
considerations, but also a passion for innovation. To
meet these challenges head-on and push the
boundaries of dissimilar welding technology, we
must embrace cutting-edge welding methods, engage
in advanced material characterization, and leverage
sophisticated computational modelling techniques.
Mitigation of these challenges requires carefully
balancing heat input and manipulating interfacial
reactions. The use of interlayers, such as thin nickel
foils, has been demonstrated to alter intermetallic
chemistry, forming more ductile phases (e.g.,
Mg2Ni) and increasing the effective load-bearing
area within the weld nugget. These advances have led
to tensile strength improvements exceeding 10%
compared to joints without interlayer. Witnessing the
advantages of multi-material approaches for part
manufacture confirms that there is a need to generate
different combinations of materials. These multi-
material parts or structures need to be carefully
designed and examined to take full advantage.
Economy, investment, quality, energy level, minimal
material wastage, lightweight production, low-cost
processes and its ability to easily fabricate complex
shapes, along with being affordable and
environmentally friendly.

Conclusion

Multi-material manufacturing techniques play a
pivotal role in designing lightweight, energy
efficient, economical structures in tailored fashion.
This review explores the unique advantages and
challenges of both solid-state and fusion-based
approaches. Achieving successful integration hinges
on precise interface engineering, effective
management of residual stresses, and ensuring
material compatibility. Friction stir additive
manufacturing (FSAM), a subset of friction stir
welding (FSW), offers a reliable solid-state method
for fabricating multi-material laminates, particularly
those made from aluminium (Al) and magnesium
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(Mg) alloys, which are in high demand in the
aerospace, automotive, and marine sectors. This
technology effectively addresses the challenges
associated with fusion welding, such as solidification
defects and microstructural degradation, especially in
light alloys. Key findings reveal that FSAM
consistently  generates  fine-grained, equiaxed
microstructures in the stirred zone through dynamic
recrystallization, which enhances crucial mechanical
properties, including tensile strength and hardness.
Although creating dissimilar Al/Mg joints presents its
own set of difficulties, careful control of process
parameters enables us to prevent the formation of
brittle intermetallic compounds, opening the door to
significant advancements in the field. Further
research should concentrate on expanding high-
fidelity computational models that accurately predict
microstructural evolution, residual stress profiles,
and fatigue performance for complex multi-pass and
multi-material FSAM processes is essential for
design and optimization. Additionally, continued
investigation into novel interlayers, surface
treatments, and post treatment to effectively manage
and control intermetallic compound formation at
dissimilar Al/Mg interfaces will improve joint
reliability and broaden application  scope.
Furthermore, the integration of Al tools for real-time
monitoring and adaptive control that integrate
thermal data, material flow characteristics, and defect
detection algorithms would enable more consistent
and higher-quality manufacturing outcomes.
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