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Abstract
Financial reconciliation is a critical process for ensuring accuracy, transparency, and compliance in modern

financial systems. Traditional reconciliation approaches, heavily reliant on manual oversight and rule-based
automation, are increasingly inadequate for the high volume, velocity, and complexity of financial data in
cloud-native environments. Artificial intelligence (A1) has emerged as a powerful tool to automate anomaly
detection, streamline reconciliation workflows, and support regulatory compliance. This review synthesizes
the state-of-the-art in Al-driven reconciliation, with a focus on cloud-native data pipelines. We discuss
important techniques such as autoencoders, adversarial models, continual learning, federated learning, and
large language models (LLMs). Experimental results prove that state-of-the-art neural techniques far surpass
the accuracy of conventional methods. We also address open issues with interpretability, scalability, and
compliance, and outline future directions including explainable Al, blockchain integration, federated
continual learning, and generative Al applications. This article seeks to offer researchers and practitioners
an in-depth summary of the promise and limitations of Al in financial reconciliation, and to outline directions
for the future generation of smart, reliable, and compliant reconciliation systems.

Keywords: Al-driven reconciliation, financial compliance; anomaly detection; cloud-native pipelines,;
explainable Al; federated learning; blockchain auditing; large language models.

1. Introduction

The speed of financial system digitization and
growing sophistication of international transactions
have heightened the need for effective, precise, and
compliant  reconciliation  processes.  Legacy
reconciliation processes, based primarily on rule-
based automation and manual intervention, cannot
cope with the sheer volume, velocity, and variety of
data passing through contemporary financial
environments [1]. While cloud-native designs and
distributed data streams increasingly become
standard, organizations also have new challenges
with unprecedented opportunities in guaranteeing
data integrity and regulatory compliance [2].
Artificial intelligence (AI) is revolutionary in this
regard, with advanced capabilities for anomalous
detection, predictive reconciliation, and adaptive
learning. Reconciliation agents with Al capabilities
can automate redundant tasks, identify mismatches
more accurately, and even learn from past
corrections to optimize increasingly [3]. These

systems are capable not only of fueling financial
accuracy but also to facilitate compliance with ever
more pervasive international standards like IFRS,
Basel III, and GDPR [4]. The relevance of this
subject goes far beyond the financial services
industry. Reconciliation closes the huge gaps of data
engineering, machine learning, and cloud computing
using artificial intelligence and thus is very practical
and academically relevant. In addition, as companies
become increasingly cloud-native data pipelines, the
usefulness of financial reconciliation takes its place
at the heart of an attempt to enable trust on the digital
platform, realize real-time decision-making, and
lower system risk in the financial markets [5]. All
these advances notwithstanding, there remain certain
challenges to be overcome. Present-day Al
technology is prone to ugly interpretability, data
heterogeneity, and distributed systems scalability
[6]. Furthermore, the use of Al in compliance-based
systems will also involve innovation-and-
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transparency balancing with auditability and ethics
2. Table 1 Key Research on Al-Driven Financial
Reconciliation and Anomaly Detection

Table 1 Key Research on Al-Driven Financial Reconciliation and Anomaly Detection

Year Title Focus Findings (Key results and conclusions)
Autoencoders detected unusual journal
Autoencoder Neural . . oy s . :
Applied entries with higher sensitivity than static
Networks versus External o .
2017 o . autoencoders to rule-based auditing methods, reducing
Auditors: Detecting Unusual . L .
. auditing false negatives in financial anomaly
Journal Entries [8] )
detection.
Detectlop ofAccountmg Proposed adversarial autoencoders that
Anomalies in the Latent Latent space . . .
) : learned semantic representations of journal
2019 Space using Adversarial anomaly L : S
. entries; improved interpretability and
Autoencoder Neural detection .. .
reduced noise in anomaly detection.
Networks [9]
Unsupe;rwsed Anoma}ly Unsupervised nghhgh‘Fed explainability challenges in
Detection for Financial unsupervised methods; proposed model-
2020 . . anomaly . . .
Auditing with Model- detection agnostic explainers to enhance auditor trust
Agnostic Explainability [10] in ML-driven results.
Detecting Anomalies in Machine Compared supervised and unsupervised
2001 Financial Data Using learning in ML approaches for audit sampling, they
Machine Learning GL/journal showed that hybrid models improved
Algorithms [11] entries anomaly detection efficiency in GL data.
Continual Learning for . Introduced continual learning to adapt to
. Continual . .
Unsupervised Anomaly . non-stationary journal entry data; reduced
2021 o . learning in . .
Detection in Continuous . performance degradation across audit
o\ auditing
Auditing [12] cycles.
Federated Continual Demonstrated privacy-preserving anomaly
: Federated + . I :
Learning to Detect . detection across institutions using
2022 . o continual . .
Accounting Anomalies in learnin federated learning; enabled real-time,
Financial Auditing [13] & distributed audit assurance.
Optimizing Payment Payment Applied ML t‘o' al‘lton?ate‘dl‘spute resolution
o . e and reconciliation in digital payments;
2023 Reconciliation Using reconciliation . -
. . . improved scalability and reduced
Machine Learning [14] automation e .
reconciliation cycle time.
Multi-Agent Al Fr.'«:lmewiorks Multi-agent Proposed a multi-agent architecture for
2024 for Automated Financial S S
o systems distributed reconciliation; enhanced
Reconciliation [15]
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scalability and anomaly resolution across
multiple financial entities.

Advancing Anomaly Used LLM embeddings for categorical

Detection: Non-Semantic LLM-.based journal entry data; improved anomaly
2024 . . . encoding for . . .
Financial Data Encoding GL data detection by addressing feature sparsity
with LLMs [16] and heterogeneity.
- . . Al for bank ReV1e.v&./eq Al apphcat.lons in bapk
Artificial Intelligence in reconciliation; emphasized real-time
2025 e statement . :
Bank Reconciliation [17] e anomaly detection and compliance benefits
reconciliation

for financial accuracy.

3. Proposed Theoretical Model

Proposed Theoretical Model: Al-Driven Financial Reconciliation in Cloud-Native Data Pipelines

Diata Sources
[Bank, ERP, AP)

Cloud-Mative Data Pipeline
{Ingestion, ETL, Stream Processing)

Al Reconciliation Agents
[MLALMRLles)

Anomaly Detection
& Clasgifecation

Complance & Reporting|
Dashisards, Audit Lgs

Fesdback & Leaming
(Human-im-thie-leoph

Figure 1 Proposed Theoretical Model

3.1. Data Sources
It handles structured and unstructured financial (ETL) and stream processing by cloud-native
information from various sources like bank services. These pipelines provide low-latency
statements, ERP systems, and third-party APIs. reconciliation support and accommodate distributed
Cloud-native platforms support elastic scale-out and environments, which are essential for global banks

parallel ingestion of large streams of data [18]. [19].
3.2. Cloud-Native Data Pipeline 3.3. Al Reconciliation Agents
Data is processed using Extract-Transform-Load Machine learning models, large language models
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(LLMs), and hybrid rule-based systems operate as
autonomous reconciliation agents. These agents
identify mismatches, predict reconciliation paths, and
classify anomalies based on both historical and
contextual data [20].

3.4. Anomaly Detection and Classification
Dedicated modules detect outliers using deep
learning (e.g., autoencoders, adversarial models) and
statistical baselines. Classification frameworks help
distinguish between compliance-critical errors,
benign mismatches, or fraud-related anomalies [21].

3.5. Compliance and Reporting
Regulatory alignment is supported through automated
dashboards, audit logs, and explainable Al methods.
These ensure transparency, which is vital for
compliance with IFRS, Basel III, and GDPR
regulations [22].

3.6. Feedback and Learning
A human-in-the-loop mechanism provides feedback
on Al decisions, enabling continual learning.
Federated and continual learning frameworks ensure
adaptation across institutions while maintaining data
privacy [23].

4. Experimental Results

Table 2 Results: ROC-AUC and F1-Score

Model ROC-AUC | F1-Score
Isolation Forest 0.87 0.74
Autoencoder 0.91 0.79
Deep SVDD 0.93 0.82
Tab Transformer 0.95 0.85
To evaluate the effectiveness of Al-driven

reconciliation agents, we benchmarked several
models on synthetic financial reconciliation data
inspired by real-world datasets such as the Credit
Card Fraud Detection dataset [24] and the PaySim
mobile money transaction simulator [25]. Metrics
include ROC-AUC, Fl-score, and Precision-Recall
curves, which are standard for anomaly detection
tasks [26].
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ROC Curves of Al Models for Financial Anomaly Detection
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Figure 2 ROC Curves of AI Models for Financial
Anomaly Detection

Precision-Recall Curves of Al Models
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Figure 3 Precision-Recall Curves of AI Models

5. Results Table
The following table summarizes the performance of
four representative models:
e [solation Forest [27]
e Autoencoder-based anomaly detection [28]
e Deep SVDD (Support Vector Data
Description) [29]
e Tab Transformer for tabular categorical
encoding [30]
6. Graphical Results
6.1. ROC Curves
The ROC curves demonstrate that deep learning
approaches (Autoencoders, Deep SVDD, Tab
Transformer) consistently outperform traditional
tree-based approaches such as Isolation Forest, with
Tab Transformer achieving the highest AUC (0.95).

International Research Journal on Advanced Engineering Hub (IRJAEH)

3505


https://irjaeh.com/

IRJAEH

6.2. Precision-Recall Curves
Precision-recall analysis shows that Tab Transformer
and Deep SVDD are particularly effective in handling
imbalanced financial data, where anomalies are rare
but critical. These results support the claim that
advanced neural methods better capture high-
dimensional financial data distributions [31].
7. Discussion
The results indicate three key insights:

e Improved Accuracy with Deep Models:
Deep SVDD and Tab Transformer outperform
Isolation Forest by significant margins,
consistent with prior research in anomaly
detection [29], [30].

e Explainability Remains a Challenge: While
deep models achieve higher performance,
tools such as SHAP values [32] are required
to improve transparency and auditor trust.

e Scalability with Cloud-Native Systems:
Federated and continual learning approaches
[33] are critical to maintaining performance
across distributed data pipelines while
ensuring compliance.

8. Future Directions

The field of Al-driven reconciliation in cloud-native
data pipelines is still evolving, with several exciting
directions ahead. First, explainable Al (XAI) remains
a critical priority. While deep learning models such as
Tab Transformer and Deep SVDD demonstrate
superior accuracy, auditors and compliance officers
require transparent justifications for anomaly
detection decisions [34]. Future research should
explore interpretable embeddings and hybrid
frameworks that balance accuracy with trust. Second,
integration with blockchain and distributed ledger
technologies (DLTs) presents opportunities to ensure
immutable audit trails, enhancing compliance while
reducing reconciliation cycles [35]. Al agents
embedded within smart contracts could perform
reconciliation autonomously and securely in
decentralized finance ecosystems. Third, federated
and continual learning will become indispensable for
institutions operating across jurisdictions. These
approaches allow models to adapt to non-stationary
financial data without violating privacy regulations,
offering scalability in real-world, multi-institutional
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contexts [36]. Finally, the emergence of generative Al
and large language models (LLMs) provides an
opportunity for intelligent agents capable not only of
identifying anomalies but also providing contextual
explanations, summaries, and automatic compliance
reporting [37]. Future systems can become self-
learning; self-auditing agents integrated into financial
infrastructures.
Conclusion
This review is focused on the revolutionary potential
of Al-powered reconciliation agents in modern
financial systems. Cloud-native data streams provide
the scalability and flexibility needed for the handling
of gigantic real-time financial transactions. Al
methods, ranging from autoencoders to federated
lifelong learning, provide significant breakthroughs
in anomaly detection, compliance support, and
automation. Challenges remain in interpretability,
ethical alignment, and cross-institutional scalability.
By combining advances in machine learning, cloud-
native platforms, and compliance, this review
identifies the strengths and limitations of current
solutions. In the future, a multi-disciplinary research
agenda blending Al blockchain, explainable ML, and
privacy-preserving techniques will be the focus
towards building reliable, compliant, and scalable
reconciliation systems. In the future, a multi-
disciplinary research agenda that blends Al
blockchain, explainable ML, and privacy-preserving
techniques will be the key to creating trustworthy,
compliant, and scalable reconciliation systems.
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