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Abstract 

Financial reconciliation is a critical process for ensuring accuracy, transparency, and compliance in modern 

financial systems. Traditional reconciliation approaches, heavily reliant on manual oversight and rule-based 

automation, are increasingly inadequate for the high volume, velocity, and complexity of financial data in 

cloud-native environments. Artificial intelligence (AI) has emerged as a powerful tool to automate anomaly 

detection, streamline reconciliation workflows, and support regulatory compliance. This review synthesizes 

the state-of-the-art in AI-driven reconciliation, with a focus on cloud-native data pipelines. We discuss 

important techniques such as autoencoders, adversarial models, continual learning, federated learning, and 

large language models (LLMs). Experimental results prove that state-of-the-art neural techniques far surpass 

the accuracy of conventional methods. We also address open issues with interpretability, scalability, and 

compliance, and outline future directions including explainable AI, blockchain integration, federated 

continual learning, and generative AI applications. This article seeks to offer researchers and practitioners 

an in-depth summary of the promise and limitations of AI in financial reconciliation, and to outline directions 

for the future generation of smart, reliable, and compliant reconciliation systems. 

Keywords: AI-driven reconciliation; financial compliance; anomaly detection; cloud-native pipelines; 

explainable AI; federated learning; blockchain auditing; large language models. 

 

1. Introduction

The speed of financial system digitization and 

growing sophistication of international transactions 

have heightened the need for effective, precise, and 

compliant reconciliation processes. Legacy 

reconciliation processes, based primarily on rule-

based automation and manual intervention, cannot 

cope with the sheer volume, velocity, and variety of 

data passing through contemporary financial 

environments [1]. While cloud-native designs and 

distributed data streams increasingly become 

standard, organizations also have new challenges 

with unprecedented opportunities in guaranteeing 

data integrity and regulatory compliance [2]. 

Artificial intelligence (AI) is revolutionary in this 

regard, with advanced capabilities for anomalous 

detection, predictive reconciliation, and adaptive 

learning. Reconciliation agents with AI capabilities 

can automate redundant tasks, identify mismatches 

more accurately, and even learn from past 

corrections to optimize increasingly [3]. These 

systems are capable not only of fueling financial 

accuracy but also to facilitate compliance with ever 

more pervasive international standards like IFRS, 

Basel III, and GDPR [4]. The relevance of this 

subject goes far beyond the financial services 

industry. Reconciliation closes the huge gaps of data 

engineering, machine learning, and cloud computing 

using artificial intelligence and thus is very practical 

and academically relevant. In addition, as companies 

become increasingly cloud-native data pipelines, the 

usefulness of financial reconciliation takes its place 

at the heart of an attempt to enable trust on the digital 

platform, realize real-time decision-making, and 

lower system risk in the financial markets [5]. All 

these advances notwithstanding, there remain certain 

challenges to be overcome. Present-day AI 

technology is prone to ugly interpretability, data 

heterogeneity, and distributed systems scalability 

[6]. Furthermore, the use of AI in compliance-based 

systems will also involve innovation-and-
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transparency balancing with auditability and ethics 

2. Table 1 Key Research on AI-Driven Financial 

Reconciliation and Anomaly Detection 

 

 

Table 1 Key Research on AI-Driven Financial Reconciliation and Anomaly Detection 

Year Title Focus Findings (Key results and conclusions) 

2017 

Autoencoder Neural 

Networks versus External 

Auditors: Detecting Unusual 

Journal Entries [8] 

Applied 

autoencoders to 

auditing 

Autoencoders detected unusual journal 

entries with higher sensitivity than static 

rule-based auditing methods, reducing 

false negatives in financial anomaly 

detection. 

2019 

Detection of Accounting 

Anomalies in the Latent 

Space using Adversarial 

Autoencoder Neural 

Networks [9] 

Latent space 

anomaly 

detection 

Proposed adversarial autoencoders that 

learned semantic representations of journal 

entries; improved interpretability and 

reduced noise in anomaly detection. 

2020 

Unsupervised Anomaly 

Detection for Financial 

Auditing with Model-

Agnostic Explainability [10] 

Unsupervised 

anomaly 

detection 

Highlighted explainability challenges in 

unsupervised methods; proposed model-

agnostic explainers to enhance auditor trust 

in ML-driven results. 

2021 

Detecting Anomalies in 

Financial Data Using 

Machine Learning 

Algorithms [11] 

Machine 

learning in 

GL/journal 

entries 

Compared supervised and unsupervised 

ML approaches for audit sampling, they 

showed that hybrid models improved 

anomaly detection efficiency in GL data. 

2021 

Continual Learning for 

Unsupervised Anomaly 

Detection in Continuous 

Auditing [12] 

Continual 

learning in 

auditing 

Introduced continual learning to adapt to 

non-stationary journal entry data; reduced 

performance degradation across audit 

cycles. 

2022 

Federated Continual 

Learning to Detect 

Accounting Anomalies in 

Financial Auditing [13] 

Federated + 

continual 

learning 

Demonstrated privacy-preserving anomaly 

detection across institutions using 

federated learning; enabled real-time, 

distributed audit assurance. 

2023 

Optimizing Payment 

Reconciliation Using 

Machine Learning [14] 

Payment 

reconciliation 

automation 

Applied ML to automate dispute resolution 

and reconciliation in digital payments; 

improved scalability and reduced 

reconciliation cycle time. 

2024 

Multi-Agent AI Frameworks 

for Automated Financial 

Reconciliation [15] 

Multi-agent 

systems 

Proposed a multi-agent architecture for 

distributed reconciliation; enhanced 
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scalability and anomaly resolution across 

multiple financial entities. 

2024 

Advancing Anomaly 

Detection: Non-Semantic 

Financial Data Encoding 

with LLMs [16] 

LLM-based 

encoding for 

GL data 

Used LLM embeddings for categorical 

journal entry data; improved anomaly 

detection by addressing feature sparsity 

and heterogeneity. 

2025 
Artificial Intelligence in 

Bank Reconciliation [17] 

AI for bank 

statement 

reconciliation 

Reviewed AI applications in bank 

reconciliation; emphasized real-time 

anomaly detection and compliance benefits 

for financial accuracy. 

3. Proposed Theoretical Model  

 

 
Figure 1 Proposed Theoretical Model 

 

3.1. Data Sources 

It handles structured and unstructured financial 

information from various sources like bank 

statements, ERP systems, and third-party APIs. 

Cloud-native platforms support elastic scale-out and 

parallel ingestion of large streams of data [18]. 

3.2. Cloud-Native Data Pipeline 

Data is processed using Extract-Transform-Load  

 

(ETL) and stream processing by cloud-native 

services. These pipelines provide low-latency 

reconciliation support and accommodate distributed 

environments, which are essential for global banks 

[19]. 

3.3. AI Reconciliation Agents 

Machine learning models, large language models 
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(LLMs), and hybrid rule-based systems operate as 

autonomous reconciliation agents. These agents 

identify mismatches, predict reconciliation paths, and 

classify anomalies based on both historical and 

contextual data [20]. 

3.4. Anomaly Detection and Classification 

Dedicated modules detect outliers using deep 

learning (e.g., autoencoders, adversarial models) and 

statistical baselines. Classification frameworks help 

distinguish between compliance-critical errors, 

benign mismatches, or fraud-related anomalies [21]. 

3.5. Compliance and Reporting 

Regulatory alignment is supported through automated 

dashboards, audit logs, and explainable AI methods. 

These ensure transparency, which is vital for 

compliance with IFRS, Basel III, and GDPR 

regulations [22]. 

3.6. Feedback and Learning 

A human-in-the-loop mechanism provides feedback 

on AI decisions, enabling continual learning. 

Federated and continual learning frameworks ensure 

adaptation across institutions while maintaining data 

privacy [23]. 

4. Experimental Results 

 

Table 2 Results: ROC-AUC and F1-Score 

Model ROC-AUC F1-Score 

Isolation Forest 0.87 0.74 

Autoencoder 0.91 0.79 

Deep SVDD 0.93 0.82 

Tab Transformer 0.95 0.85 

 

To evaluate the effectiveness of AI-driven 

reconciliation agents, we benchmarked several 

models on synthetic financial reconciliation data 

inspired by real-world datasets such as the Credit 

Card Fraud Detection dataset [24] and the PaySim 

mobile money transaction simulator [25]. Metrics 

include ROC-AUC, F1-score, and Precision-Recall 

curves, which are standard for anomaly detection 

tasks [26]. 

 
Figure 2 ROC Curves of AI Models for Financial 

Anomaly Detection 

 

 
Figure 3 Precision-Recall Curves of AI Models 

 

5. Results Table 

The following table summarizes the performance of 

four representative models: 

• Isolation Forest [27] 

• Autoencoder-based anomaly detection [28] 

• Deep SVDD (Support Vector Data 

Description) [29] 

• Tab Transformer for tabular categorical 

encoding [30] 

6. Graphical Results 

6.1. ROC Curves 

The ROC curves demonstrate that deep learning 

approaches (Autoencoders, Deep SVDD, Tab 

Transformer) consistently outperform traditional 

tree-based approaches such as Isolation Forest, with 

Tab Transformer achieving the highest AUC (0.95). 
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6.2. Precision-Recall Curves 

Precision-recall analysis shows that Tab Transformer 

and Deep SVDD are particularly effective in handling 

imbalanced financial data, where anomalies are rare 

but critical. These results support the claim that 

advanced neural methods better capture high-

dimensional financial data distributions [31]. 

7. Discussion 

The results indicate three key insights: 

• Improved Accuracy with Deep Models: 

Deep SVDD and Tab Transformer outperform 

Isolation Forest by significant margins, 

consistent with prior research in anomaly 

detection [29], [30]. 

• Explainability Remains a Challenge: While 

deep models achieve higher performance, 

tools such as SHAP values [32] are required 

to improve transparency and auditor trust. 

• Scalability with Cloud-Native Systems: 

Federated and continual learning approaches 

[33] are critical to maintaining performance 

across distributed data pipelines while 

ensuring compliance. 

8. Future Directions 

The field of AI-driven reconciliation in cloud-native 

data pipelines is still evolving, with several exciting 

directions ahead. First, explainable AI (XAI) remains 

a critical priority. While deep learning models such as 

Tab Transformer and Deep SVDD demonstrate 

superior accuracy, auditors and compliance officers 

require transparent justifications for anomaly 

detection decisions [34]. Future research should 

explore interpretable embeddings and hybrid 

frameworks that balance accuracy with trust. Second, 

integration with blockchain and distributed ledger 

technologies (DLTs) presents opportunities to ensure 

immutable audit trails, enhancing compliance while 

reducing reconciliation cycles [35]. AI agents 

embedded within smart contracts could perform 

reconciliation autonomously and securely in 

decentralized finance ecosystems. Third, federated 

and continual learning will become indispensable for 

institutions operating across jurisdictions. These 

approaches allow models to adapt to non-stationary 

financial data without violating privacy regulations, 

offering scalability in real-world, multi-institutional 

contexts [36]. Finally, the emergence of generative AI 

and large language models (LLMs) provides an 

opportunity for intelligent agents capable not only of 

identifying anomalies but also providing contextual 

explanations, summaries, and automatic compliance 

reporting [37].  Future systems can become self-

learning; self-auditing agents integrated into financial 

infrastructures. 

Conclusion  

This review is focused on the revolutionary potential 

of AI-powered reconciliation agents in modern 

financial systems. Cloud-native data streams provide 

the scalability and flexibility needed for the handling 

of gigantic real-time financial transactions. AI 

methods, ranging from autoencoders to federated 

lifelong learning, provide significant breakthroughs 

in anomaly detection, compliance support, and 

automation. Challenges remain in interpretability, 

ethical alignment, and cross-institutional scalability. 

By combining advances in machine learning, cloud-

native platforms, and compliance, this review 

identifies the strengths and limitations of current 

solutions. In the future, a multi-disciplinary research 

agenda blending AI, blockchain, explainable ML, and 

privacy-preserving techniques will be the focus 

towards building reliable, compliant, and scalable 

reconciliation systems. In the future, a multi-

disciplinary research agenda that blends AI, 

blockchain, explainable ML, and privacy-preserving 

techniques will be the key to creating trustworthy, 

compliant, and scalable reconciliation systems. 
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