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Abstract 

Remote Sensing (RS) image classification, particularly involving Earth Observation (EO) satellite data, 

presents significant challenges due to the complexity and variety of image content. This study addresses these 

challenges by evaluating the performance of three advanced deep learning models—DenseNet121, ResNet50, 

and EfficientNetB7—on the UC Merced Land Use (UCM) dataset. By leveraging pre-trained Convolutional 

Neural Networks (CNNs) through transfer learning, our approach effectively mitigates the issue of limited 

labelled data and enhances the accuracy of classification in high-resolution aerial imagery. This paper 

provides an in-depth study of said models, emphasizing their accuracy, precision, recall, and computing 

efficiency in the classification of land use domains. The findings provide insightful information about how well 

these various CNN architectures perform in classifying remote sensing images and lay the groundwork for 

further deep learning-based land use categorization research 

Keywords: Classification, High-Resolution Images, Transfer Learning, Remote Sensing, Satellite Data 

 

1. Introduction  

The rapid development of deep learning technology 

has revolutionized the analysis of data in remote 

sensing images, providing unprecedented accuracy 

and efficiency in many field applications such as land 

cover classification, crop discovery and 

transformation. Remote sensing, which involves 

obtaining information about the Earth's surface from 

satellite or aerial images, presents unique challenges 

and opportunities for training deep models. The 

inherent complexity and high dimensionality of these 

images require sophisticated algorithms that can 

extract content features and make accurate 

predictions. Among many deep learning methods, 

DenseNet121, ResNet50, and EfficientNetB5 have 

emerged as the main candidates, each with unique 

features and advantages. This comparative study 

aims to evaluate and compare these three models to 

determine their effectiveness in processing data in 

remote sensing images. DenseNet121 was proposed 

by Huang et al. This design improves the extension 

and support of recycling materials, which is 

important for high-resolution tasks with complex 

details such as those encountered in remote sensing. 

Such a structure increases efficiency and improves 

accuracy by allowing each layer to directly connect 

to previous layers, thus supporting more powerful 

learning. An impressive architecture that has a 

significant impact on deep learning applications.  

ResNet50, developed by He et al., introduces the 

concept of residual learning, where the network 

learns residual mappings instead of direct learning. 

This approach can train deep networks by reducing 

the degradation problems commonly encountered in 

deep models. The connections in ResNet50 facilitate 

the flow of gradients in the network, improving the 

performance of tasks such as object recognition and 

segmentation. In remote sensing, where images vary 

in scale and background, the ability of the model to 

learn complex features and handle operations at 

different depths is a nice result. Architecture.  

EfficientNetB5 is based on the concept of network 

scaling, which balances the width, depth, and 

resolution of the network to achieve a balance 

between accuracy and computational efficiency. The 

EfficientNet family uses a novel deployment strategy 

that improves performance and resource utilization, 
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making it especially suitable for remote sensing 

applications where processing power and memory are 

less of an issue. EfficientNetB5 can provide high 

accuracy while maintaining low cost, making it the 

best choice for analysing big data in remote areas. 

analyse content. By evaluating the performance of 

these models according to various metrics such as 

classification accuracy, computational efficiency, 

and performance for different images, we aim to 

define deep learning for remote sensing applications. 

The comparisons will provide insight into the 

strengths and limitations of each model and inform 

future research and practical applications in remote 

sensing.  

2. Literature Review 

Remote sensing image classification has witnessed 

tremendous development by incorporating deep 

learning techniques. As can be seen, the fusion of 

deep learning into satellite image classification in 

remote sensing will revolutionize the field: it enables 

automatic and rather more precise analysis of 

complex datasets by computing. Adegun et al. [1] 

investigated a comparative analysis of some deep 

learning models, suggesting that deeper CNNs 

involving more layers have exceptional behavior in 

dealing with heterogeneous appearance typical in 

high-resolution images, which are typical in large-

scale satellite images. Ahmad et al. [2] presented a 

wide-ranging overview of the techniques to classify 

remote sensing images, while emphasizing 

challenges like multi-class classification, the need for 

benchmark large-scale datasets, and more efficient 

deep learning models. Cheng et al. [3] looked into the 

intersection of scene classification and deep learning 

and discovered the architectural innovation behind 

such successful techniques and how to make good use 

of opportunities for persisting challenges in the 

domain. Applications of deep learning on the specific 

domains were very versatile, such as its use in the 

automatic identification of medicinal plants based on 

the leaf images, by using DenseNet201 as done by 

Dey et al. [4-5]. While the model worked fine, there 

was a problem in species variability, geographical 

differences, and seasonal changes that still required 

further refinement. Guo et al. [6] introduced a 

channel saliency-based method known as CSG-

CAM, which helps in increasing the interpretability 

of remote sensing image classification through 

dynamic channel pruning and gradient-based 

saliency visualizations. Gupta et al. [7] explored 

transfer learning with pre-trained deep learning 

models such as VGG19, InceptionV3, and 

DenseNet169, which achieved massive 

computational savings and robust classification 

performance, especially in areas where labeled 

datasets are minimal. Several novel frameworks and 

approaches have been developed to enhance 

classification accuracy and efficiency. Dou et al. [5] 

and Peng et al. [15] have integrated deep learning 

with multiple classifier systems in time-series remote 

sensing image classification. Their hybrid 

frameworks attained tremendous performance across 

datasets like AID and NWPU-RESISC45. Liu et al. 

[13] suggested the Object-oriented CNN, which 

performed better than a traditional CNN in land cover 

and vegetation classification, and their technique was 

improved by 5%. Yin et al. [20] enhanced the feature 

extraction and optimization technique for benchmark 

datasets like CIFAR-10 and CIFAR-100 using a 

dynamic pruning and reconstruction network, which 

extended DenseNet. Similarly, Wang et al. [18] 

added residual attention mechanisms to DenseNet to 

improve performance in the classification of images 

of power equipment with an accuracy improvement 

of 8.89% on datasets that include CIFAR-10. Deep 

learning has also been helpful in solving challenges 

in medical imaging and urban analysis. For example, 

Hasan et al. [8] showed the use of DenseNet in 

predicting cases of COVID-19 from CT images. The 

study attained a commended accuracy of 92% but 

was constrained by size and the necessity for 

visualizations. Liao et al. [11] applies DenseNet in 

the context of asymmetry detection in 

mammography, such that the model is superior 

compared to junior radiologists to detect lesions in 

the RMLO and RCC datasets. Zhao et al. [21] 

discussed the use of deep transfer learning for cross-

city land use classification by leveraging the labeled 

datasets of similar regions to improve overall and 

average accuracy. This demonstrates the increased 

use of transfer learning in adapting pre-trained 

models to specific domains. Explainable AI and 
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interpretability in remote sensing is increasingly 

gaining attention as researchers focus on model 

reliability. Ishikawa et al. [9] presented an example-

based explainable AI approach, wherein similar 

examples from training data are presented during 

inference to improve user trust and validation. 

Similarly, Guo et al. [6] used saliency maps for visual 

explanations of model predictions, thus focusing on 

interpretability. These efforts indicate that more and 

more importance is being given to the understanding 

and justification of decisions made by models, 

especially in high-stakes applications such as 

environmental monitoring and disaster management. 

Comprehensive surveys have synthesized the state of 

the art and identified opportunities for future 

research. Tombe et al. [17] analyzed advancements in 

deep learning architectures, frameworks, and datasets 

for remote sensing image scene classification, while 

Li et al. [12] reviewed CNNs, stacked autoencoders 

(SAEs), and deep belief networks (DBNs) using the 

UCM dataset. Their conclusions highlighted the need 

for integration of spectral and spatial features and 

robust optimization techniques. Kumar et al. [10] 

proved the potential of DCNN models in region 

classification mining with fused multi-sensor satellite 

data with 99.8% accuracy, which establishes a 

benchmark for future work. Transfer learning and 

data augmentation are the most critical factors in 

exploiting deep learning for remote sensing. 

Thirumaladevi et al. [16] applied transfer learning to 

the SIRI-WHU dataset, where they modified pre-

trained networks to achieve better classification 

accuracy. Yang et al. [19] compared lung images of 

COVID-19 patients, showing the advantages of 

residual connections in ResNet and the efficiency of 

EfficientNet for small datasets. These studies jointly 

emphasize the transformative potential of deep 

learning in remote sensing image classification. 

However, there are also critical gaps ahead, such as 

scalable models, explainable frameworks, and robust 

methods to mitigate variability across datasets. 

Moving forward, hybrid approaches should continue 

to be explored, while novel architectures are 

integrated, along with a focus on interpretability, so 

that deep learning techniques meet the demands of 

diverse applications and evolving challenges. 

3. Methodology 

This section explains how the Keras library for deep 

learning is used to implement transfer learning. First, 

the available pre-trained models are displayed. Next, 

the input data is pre-processed for classification. 

Finally, the pre-trained model is fine-tuned to 

improve the output.  

3.1. Datasets 

The UC Merced (UCM) Land Use dataset is a 

popular resource in remote sensing and computer 

vision research, particularly for land use and land 

cover classification. It consists of 2,100 high-

resolution aerial images, each measuring 256 x 256 

pixels, divided into 21 unique land use categories 

with 100 images per class. To enhance the dataset's 

diversity and size, data augmentation techniques 

were applied, generating four additional variations 

for each original image, resulting in 500 images per 

class. The dataset represents a wide range of natural 

and human-made environments, such as 

"agricultural," "airplane," "baseball diamond," 

"beach," "buildings," "chaparral," "dense 

residential," "forest," "freeway," "golf course," 

"harbour," "intersection," "medium residential," 

"mobile home park," "overpass," "parking lot," 

"river," "runway," "sparse residential," "storage 

tanks," and "tennis court."  With its consistent image 

dimensions and balanced class distribution, the UCM 

dataset serves as a robust platform for developing and 

evaluating machine learning models, particularly for 

image classification and land use mapping tasks. Its 

diverse class representation—from natural features 

like forests and rivers to human-made structures such 

as runways and storage tanks—makes it a 

comprehensive resource for studying various land use 

types in remote sensing imagery. Figure 1 shows the 

UCM sample database images. 

 

 
      Figure 1 UCM Database Sample Images 
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3.2.Architecture of ResNET50 

ResNet50 is a CNN architecture known for its 

introduction of residual connections, which help 

mitigate the vanishing gradient problem and enable 

the training of much deeper networks. Introduced by 

He et al. in 2015, ResNet50 is part of the ResNet 

family and consists of 50 layers. Its key innovation is 

the residual block, where the input to a layer is added 

directly to the output, allowing gradients to flow 

more easily through the network. The architecture is 

organized into an initial convolution and max pooling 

layer, followed by four stages of convolutional blocks 

with residual connections. Each stage consists of 

several blocks, with 1x1, 3x3, and 1x1 convolutions. 

The network ends with a global average pooling 

layer, a fully connected layer, and a softmax 

activation for classification. ResNet50's design 

enables the construction of deeper and more accurate 

models while maintaining manageable computational 

complexity, making it highly effective for various 

image recognition tasks. Figure 2 describes 

Architecture of ResNet50 [11-17]. 

 

 
Figure 2 Architecture of ResNet50 

 

3.3. Architecture of DenseNet121 

Figure 3 Shows DenseNet121 architecture. 

DenseNet121 is a CNN architecture known for its 

dense connectivity, where each layer receives inputs 

from all preceding layers and provides outputs to all 

subsequent layers. Introduced in 2017 by Huang et 

al., DenseNet121 is part of the DenseNet family, 

designed to enhance gradient flow and feature reuse, 

thus reducing the vanishing gradient problem and 

improving parameter efficiency. The model 

comprises four dense blocks interspersed with 

transition layers that down sample feature maps. 

Specifically, it includes an initial 7x7 convolution 

followed by max pooling, then dense blocks with 6, 

12, 24, and 16 layers, each separated by 1x1 

convolution and 2x2 average pooling transition  

layers. The architecture concludes with the global 

average pooling and a completely connected layer 

with softmax activation for classification. This design 

maintains high performance while being 

computationally efficient, making DenseNet121 

suitable for various image recognition tasks. 

 

 
Figure 3 Architecture of DenseNet121 

 

3.4. Architecture of EfficientNetB7 

 

 
Figure 4 Architecture of EfficientNetB7 

 

Figure 4 shows EfficientNetB7 Architecture. 

EfficientNetB7 is a high-performance CNN 

architecture that balances accuracy and efficiency 

through compound scaling. Introduced by Tan and Le 

https://irjaeh.com/


 

International Research Journal on Advanced Engineering Hub (IRJAEH) 

e ISSN: 2584-2137 

Vol. 03 Issue: 07 July 2025 

Page No: 3270-3279 

https://irjaeh.com 

https://doi.org/10.47392/IRJAEH.2025.0481 

 

    

International Research Journal on Advanced Engineering Hub (IRJAEH) 
                         

3274 

 

in 2019, EfficientNetB7 is part of the EfficientNet 

family, which scales depth, width, and resolution 

systematically. This model achieves the state-of-the-

art performance with lesser parameters and 

computational resources compared to the previous 

architectures. EfficientNetB7 employs a baseline 

network optimized with Mobile Inverted Bottleneck 

Convolution (MBConv) blocks and includes 

techniques like depth wise separable convolutions 

and squeeze-and-excitation optimization. The 

architecture is scaled up proportionally in all 

dimensions—layers, channels, and image 

resolution—to maintain efficiency. Starting with an 

initial 3x3 convolution and max pooling, it consists 

of several MBConv blocks followed by global 

average pooling, a fully connected layer, and a 

softmax activation for classification. 

EfficientNetB7's design offers a powerful yet 

resource-efficient solution for a wide range of image 

recognition tasks [18-21]. 

4. Results and Discussion  

Based on their accuracy and loss values, we examine 

and contrast the three deep learning models—

ResNet50, DenseNet121, and EfficientNetB7 in this 

section. EfficientNetB7 demonstrated strong 

performance, likely due to its architecture, which 

prioritizes computational efficiency while balancing 

network depth, width, and resolution. To assess these 

models' performance in image classification tasks, a 

specific dataset was used. With a loss of 0.1431 and 

an accuracy of 96.19%, the results show that 

EfficientNetB7 performed the best, demonstrating its 

proficiency in identifying significant features and 

generalizing well to new data. DenseNet121, in 

contrast, performed quite well, achieving an accuracy 

of 83.76% and a lower loss value of 0.6836. Its 

performance was noteworthy, even if it fell short of 

EfficientNetB7's accuracy level. This can be 

attributed to its dense connectivity, which promotes 

feature reuse across layers and reduces the number of 

parameters required to achieve high accuracy. 

However, compared to EfficientNetB7, 

DenseNet121 seemed less adept at managing the 

dataset's complexity. Despite being well-regarded for 

its residual connections, which enable it to handle 

deep architectures effectively, ResNet50 performed 

the worst among the three models. It achieved a lower 

accuracy of 70.33% and a relatively high loss value 

of 1.4299. This suggests that ResNet50 may not be 

the best choice for this dataset or may require 

additional fine-tuning to improve its performance. 

While ResNet50 is known for its resilience and 

effectiveness in various image classification tasks, its 

results in this case indicate limitations with this 

dataset. Overall, the outcomes highlight the varying 

performance of different models, with 

EfficientNetB7 emerging as the most successful 

model for this classification task. Table 1 shows the 

performance of transfer learning models of land use 

scene data set. 

 

Table 1 Comparison of Transfer Learning 

Models on Land use Scene Dataset 

Model Loss Accuracy 

ResNet50 1.4299 0.7033 

DenseNet121 0.6836 0.8376 

EfficientNetB7 0.1431 0.9619 

 

There is noticeable rise in the performance of all three 

models—ResNet50, DenseNet121, and 

EfficientNetB7—on the picture classification test 

after fine-tuning them by making the final three 

layers of each model trainable while maintaining the  

remaining layers frozen. By making these deliberate 

changes, each model was able to concentrate on 

honing the most specialized layers for the dataset, 

maximizing their capacity to extract important 

features without overfitting to the training set. By 

fine-tuning the upper layers of the model, the models 

were able to more precisely respond to the unique 

features of the dataset, which produced better 

classification results. After using this consistent fine-

tuning technique, EfficientNetB7 demonstrated the 

most performance gains, with its accuracy increasing 

to 97.43% and its loss falling to 0.0876. Fine-tuning 

the final three layers improved the model's design, 

which effectively strikes a balance between 

computational power and network complexity. This 

allowed the model to learn from the data more 

effectively. Through additional feature extraction 

improvements, EfficientNetB7 emerged as the most 
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accurate model in this comparison, demonstrating its 

continued aptitude for challenging picture 

classification tasks. Following the fine-tuning, 

DenseNet121 also saw notable gains, with an 

accuracy increase to 97.19% and a loss value 

decrease to 0.0892. Its architecture, with its extensive 

connectivity, encourages feature reuse, which can be 

especially useful when training just a few layers.  

 

Table 2 Comparison of Fine-Tuned Transfer 

Learning Models on Land use Scene Dataset 

Model Loss Accuracy 

ResNet50 0.2246 0.9357 

DenseNet121 0.0892 0.9719 

EfficientNetB7 0.0876 0.9743 

 

 
Figure 5 Training and Validation Graphs for 

Resnet50 

 
Figure 6 Training and Validation 

Graphs for EfficientNetB7 

 

 
Figure 7 Training and Validation Graphs for 

DenseNet121 

DenseNet121's ability to focus on the most pertinent 

features for this dataset was demonstrated by fine-

tuning the final three layers, indicating the network's 

flexibility and potential for high accuracy. Using the 

same fine-tuning procedure, ResNet50's performance 

was significantly improved, yielding an accuracy of 

93.57% and a loss of 0.2246. Even though it didn't 

perform as accurately as DenseNet121 and 

EfficientNetB7, the gains show how important it is to 

train specific layers and selectively unfreeze them to 

better adjust to the characteristics of the dataset. This 

result indicates that although the architecture of 

ResNet50 is robust by design, it can be made 

competitive for a variety of picture classification 

applications by fine-tuning individual layers to 

improve performance noticeably. 

4.1. Performance Metrics. 

The performance of deep learning models in image 

classification is generally evaluated using standard 

metrics such as Accuracy, Precision, Recall, and F1-

score. These metrics are explained as follows: 

Accuracy represents the ratio of correctly predicted 

instances to the total number of instances. It is 

calculated using the formula: Accuracy = (TP + TN) 

/ (TP + TN + FP + FN) 

where TP stands for True Positives, TN for True 

Negatives, FP for False Positives, and FN for False 

Negatives.  F1-Score is the harmonic mean of 

Precision and Recall, offering a balanced evaluation 

by considering both false positives and false 

negatives. It is calculated as: F1-Score = 2 × 

(Precision × Recall) / (Precision + Recall). The 

Figures 5, 6, and 7, describes the accuracy and loss 

which show the performance measures and offer 

further information. Figure 6 shows how 

EfficientNetB7 performs better than DenseNet121 

across the board in all criteria. Recall (or Sensitivity) 

measures the proportion of actual positives correctly 

identified by the model. It is defined as: Recall = TP 

/ (TP + FN). Precision measures the fraction of 

correctly predicted positive instances over the total 

predicted positives. It is calculated as: Precision = TP 

/ (TP + FP) The Confusion Matrix provides a 

comprehensive analysis by showing the number of 

true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). This matrix 
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illustrates the performance of a classification model 

by representing all possible combinations of actual 

and predicted outcomes. positive instances over the 

total predicted positives. It is calculated as: Precision 

= TP / (TP + FP). The Confusion Matrix provides a 

comprehensive analysis by showing the number of 

true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN). This matrix 

illustrates the performance of a classification model 

by representing all possible combinations of actual 

and predicted outcomes. 

 

 
Figure 8 Confusion Matrix for Resnet50 

 

4.2 Model performance on UC Merced Dataset 

The performance metrics of ResNet50, 

DenseNet121, and EfficientNetB7, encompassing 

accuracy, precision, recall, and F1-score, are 

summarized in Table 3. The two networks with the 

greatest scores are DenseNet121 and EfficientNetB7. 

EfficientNetB7 slightly outperforms DenseNet121 in 

terms of accuracy (0.9667 vs. 0.9610) and F1-score 

(0.9664 vs. 0.9609). Although ResNet50 is doing 

admirably, its metrics are marginally worse than 

those of DenseNet121 and EfficientNetB7. 

Confusion matrices and classification outputs are 

shown in Figures 9 and 10, which demonstrate how 

robust and well-generalizing DenseNet121 and 

EfficientNetB7 are by accurately classifying most 

data with little misclassification. This uniform 

performance across several displays supports Table 

3's numerical data, shown in Figure 8, 11 to 13. 

 
Figure 9 Confusion Matrix for Densenet121 

 

 
Figure 10 Confusion Matrix for Resnet50 

 

 
Figure 11 Output Comparison for DenseNet121 
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Figure 12 Output Comparison for EfficientNetB7 

 

 
Figure 13 Output Comparison for Resnet50 

 

Table 3 Comparison of Fine-Tuned Transfer 

Learning Models on Land use Scene Dataset 

Model 
Accura

cy 

Precisi

on 

Reca

ll 

F1-

Scor

e 

ResNet50 0.9343 0.9352 
0.934

3 

0.934

0 

DenseNet12

1 
0.9610 0.9622 

0.961

0 

0.960

9 

EfficientNet

B7 
0.9609 0.9666 

0.966

7 

0.966

4 

 

Conclusion  

To sum up, Resnet, Densenet, and EfficientNet are 

important turning points in the development of deep 

convolutional neural network designs, each bringing 

unique ideas to bear on issues with feature reuse, 

parameter efficiency, and training.  Resnet's residual 

connections, which help to reduce the vanishing 

gradient problem and make it possible to train very 

deep networks, revolutionized the field of deep 

learning. Its skip connections increase feature 

learning across a range of computer vision tasks and 

improve information flow. With its tightly connected 

layers, Densenet reduces parameters dramatically 

while improving gradient flow and feature reuse. 

More compact models with richer feature 

representations and greater network capacity 

utilization are produced by this approach. By using 

compound scaling to balance model size, depth, and 

width holistically, EfficientNet achieves the state-of-

the-art performance with fewer parameters. Setting 

the standard for resource-efficient deep learning, it 

provides scalability under a variety of computing 

limitations. When taken as a whole, these 

architectures have improved the field, and their 

breakthroughs keep neural network research moving 

forward. The next generation of deep learning models 

will probably be developed by building on the ideas 

of Resnet, Densenet, and EfficientNet in future 

research, shown in Table 3. 
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